分析 由已知数列递推式,利用累积法求得数列的通项公式.
解答 解:由$\frac{{{a_{n+1}}}}{a_n}=\frac{n+2}{n}$,得
$\frac{{a}_{2}}{{a}_{1}}=\frac{3}{1}$,$\frac{{a}_{3}}{{a}_{2}}=\frac{4}{2}$,$\frac{{a}_{4}}{{a}_{3}}=\frac{5}{3}$,$\frac{{a}_{5}}{{a}_{4}}=\frac{6}{4}$,…,
$\frac{{a}_{n-1}}{{a}_{n-2}}=\frac{n}{n-2}$,$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n+1}{n-1}$(n≥2).
累积得:$\frac{{a}_{n}}{{a}_{1}}=\frac{n(n+1)}{2}$(n≥2).
∵a1=1,∴${a}_{n}=\frac{n(n+1)}{2}$(n≥2).
验证n=1时,上式成立.
∴${a}_{n}=\frac{n(n+1)}{2}$(n∈N*).
故答案为:$\frac{n(n+1)}{2}(n∈{N}^{*})$.
点评 本题考查数列递推式,考查了累积法求数列的通项公式,是中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{55}}{55}$ | C. | $\frac{\sqrt{11}}{11}$ | D. | $\frac{\sqrt{55}}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com