精英家教网 > 高中数学 > 题目详情
已知函数处的切线与轴平行.
(1)求的值和函数的单调区间;
(2)若函数的图象与抛物线恰有三个不同交点,求的取值范围.
(1);函数的单调递增区间为的单调递减区间为;(2)的取值范围

试题分析:(1)首先求函数的导数,由已知条件函数处的切线与轴平行,解方程可得的值;解不等式可得函数的单调递增区间,解不等式可得函数的单调递减区间为;(2) 令,则由题意等价于有三个不同的根,即的极小值为小于0,且的极大值为大于0.因此利用导数求函数的极大极小值,列不等式组并求解即得的取值范围.
试题解析:(1),                                 (2分)
,解得.                         (3分)

的单调递增区间为的单调递减区间为
(判断过程给两分)       (7分)
(2)令,     (8分)
则原题意等价于有三个不同的根.
,                     (9分)
上递增,在上递减.       (10分)
的极小值为,且的极大值为
解得. 的取值范围.                     (13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若曲线处的切线相互平行,求的值;
(2)试讨论的单调性;
(3)设,对任意的,均存在,使得.试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],
[0,1],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,恒过定点
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,直接写出的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且.
(1)判断的奇偶性并说明理由;
(2)判断在区间上的单调性,并证明你的结论;
(3)若对任意实数,有成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
⑴求函数的单调区间;
⑵如果对于任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)当时判断的单调性;
(2)若在其定义域为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

记定义在R上的函数的导函数为.如果存在,使得成立,则称为函数在区间上的“中值点”.那么函数 在区间[-2,2]上的“中值点”为____

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线在点的切线方程是____________              

查看答案和解析>>

同步练习册答案