精英家教网 > 高中数学 > 题目详情
若P(3,-2),Q(
1
2
1
2
),R(a,3)三点在一条直线上,则a的值为(  )
A、2
B、
1
2
C、-2
D、-3
考点:直线的斜率
专题:直线与圆
分析:利用两条直线的斜率相等,经过相同的点,三点共线,求出a即可.
解答: 解:P(3,-2),Q(
1
2
1
2
),R(a,3)三点在一条直线上,
所以
-2-
1
2
3-
1
2
=
-2-3
3-a

解得a=-2.
故选:C.
点评:本题考查三点共线,直线的斜率的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆心在x轴正半轴上,半径为2,且与直线x-
3
y+2=0相切的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

lg5+lg2+eln2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+2x-8≤0},B={x|
2x
x-1
>1},
(1)求(∁RA)∩B;
(2)设集合C={x|x≥a},若∁R(B∪C)=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin2α=
24
25
,α∈(-
π
4
,0),则sinα+cosα等于(  )
A、-
1
5
B、
1
5
C、-
7
5
D、
7
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=1+i,则
z2-2z
z-1
等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={-1,2,3,7},B={0,2,3,8},则A∪B=(  )
A、{-1,2,3,7}
B、{0,2,3,8}
C、{2,3}
D、{-1,0,2,3,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,-π<φ≤π)的最小正周期为6π,且当x=
π
2
时,f(x)取得最大值,则(  )
A、f(x)=2sin(
x
3
-
π
3
)
B、f(x)=2sin(
x
3
+
π
3
)
C、f(x)=2sin(
x
3
-
π
6
)
D、f(x)=2sin(
x
3
+
π
6
)

查看答案和解析>>

科目:高中数学 来源: 题型:

是否存在实数a,使得函数y=sin2x+acos x+
5
8
a-
3
2
在闭区间[-
π
2
π
3
]
上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.

查看答案和解析>>

同步练习册答案