精英家教网 > 高中数学 > 题目详情
(本题满分14分)
如图,在正方体ABCD—A1B1C1D1中,M、N、G
分别是A1A,D1C,AD的中点.求证:(Ⅰ)MN//平面ABCD;(Ⅱ)MN⊥平面B1BG.
证明:(1)取CD的中点记为E,连NE,AE.
由N,E分别为CD1与CD的中点可得
NE∥D1D且NE=D1D, ………………………………2分
又AM∥D1D且AM=D1D………………………………4分
所以AM∥EN且AM=EN,即四边形AMNE为平行四边形
所以MN∥AE,  ………………………………6分
又AE面ABCD,所以MN∥面ABCD……8分
(2)由AG=DE ,,DA=AB
可得全等……………………………10分
所以,      ……………………………………………11分
,所以
所以,                     ………………………………………………12分
,所以,  ……………………………………………………13分
又MN∥AE,所以MN⊥平面B1BG ……………………………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共14分) 已知四棱锥的底面为直角梯形,底面,且的中点。
(Ⅰ)证明:面
(Ⅱ)求所成角的余弦值;
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直平行六面体ABCD-A1B1C1D1的高为3,
底面是边长为4, 且∠BAD=60°的菱形,AC∩
BD=O,A1C1∩B1D1=O1,E是线段AO1上一点.
(Ⅰ)求点A到平面O1BC的距离;
(Ⅱ)当AE为何值时,二面角E-BC-D的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角

(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1//面BDC1
  (Ⅱ)求二面角C1—BD—C的余弦值;
(Ⅲ)在侧棱AA­1上是否存在点P,使得
CP⊥面BDC1?并证明你的结论.


 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)在四棱锥中,底面是矩形,平面. 以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面⊥平面      
(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图所示,在棱长为的正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。


 
(Ⅰ)求证:BH//平面A1EFD1

(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是线段A1B的中点.                                       
(1)证明:面⊥平面A1B1BA;
(2)证明:
(3)求棱柱ABC—A1B1C1被平面分成两部分
的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l4分)如图,边长为的正方体中,的中点,在线段上,且
(1)求异面直线所成角的余弦值;
(2)证明:
(3)求点到面的距离.

查看答案和解析>>

同步练习册答案