【题目】已知四棱锥P﹣ABCD的底面为矩形,PA⊥平面ABCD,PA=AB=2,AD=1,点M为PC中点,过A、M的平面α与此四棱锥的面相交,交线围成一个四边形,且平面α⊥平面PBC.
(1)在图中画出这个四边形(不必说出画法和理由);
(2)求平面α与平面ABM所成锐二面角的余弦值.
【答案】
(1)解:取PB中点N,连接AN,DM,MN,
则MN∥AD,MN与AD确定平面α
(2)解:分别以AD、AB、AP所在直线为x、y、z轴建立如图直角坐标系,
∵PA=AB=2,AD=1,点M为PC中点,N为PB中点,
∴ ,
, ,
设平面AMB的法向量 ,
则由 ,取x=2,得 .
平面α的法向量 ,
∴平面α与平面AMB所成二面角的余弦值 .
【解析】(1)取PB中点N,连接AN,DM,MN,则MN∥AD,由公理2的推论可得平面α;(2)分别以AD、AB、AP所在直线为x、y、z轴建立如图直角坐标系,由已知求得所用点的坐标,进一步求得平面α与平面ABM的法向量,由法向量所成角的余弦值可得平面α与平面ABM所成锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点A,B,C,D在同一个球的球面上,AB=BC=2,AC=2 ,若四面体ABCD体积的最大值为 ,则该球的表面积为( )
A.
B.8π
C.9π
D.12π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑, 平面, , ,三棱锥的四个顶点都在球的球面上,则球的表面积为( ).
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4;坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程.
(Ⅱ)求曲线上的点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约( )
A.164石
B.178石
C.189石
D.196石
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线: (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为.
(1)分别求曲线的极坐标方程和曲线的直角坐标方程;
(2)设直线交曲线于, 两点,交曲线于, 两点,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为C的圆过点A(0,﹣6)和B(1,﹣5),且圆心在直线l:x﹣y+1=0上.
(1)求圆心为C的圆的标准方程;
(2)过点M(2,8)作圆的切线,求切线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com