精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形是正方形,平面分别是线段的中点,.

(1)求证:∥平面

(2)求平面与平面所成锐二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)中点,连接,易得四边形为平行四边形,从而

所以∥平面(2)平面且四边形是正方形,两两垂直,以为原点,所在直线为轴,建立空间直角坐标系,求出平面与平面的法向量,代入公式得到所成锐二面角的余弦值.

试题解析:

(1)取中点,连接

分别是中点

中点,为矩形,

四边形为平行四边形

平面平面平面

(2)平面且四边形是正方形,两两垂直,以为原点,所在直线为轴,建立空间直角坐标系

设平面法向量为

,取

则设平面法向量为

.

平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数.

1)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数,求函数的解析式;

2)若上单调递增,求的取值范围;

3)在(1)的条件下的函数的图像,区间满足:上至少含有30个零点,在所有满足上述条件的中,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点DD在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

)证明:GAB的中点;

)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,曲线总在曲线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

1)当时,写出的单调递增区间(不需写出推证过程);

2)当时,若直线与函数的图象相交于两点,记,求的最大值;

3)若关于的方程在区间上有两个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为数列的前项和,已知

(1)求

(2)记数列的前项和为,若对于任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若对区间内的任意实数,都有,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图一是美丽的勾股树,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1勾股树,重复图二的作法,得到图三为第2勾股树,以此类推,已知最大的正方形面积为1,则第勾股树所有正方形的个数与面积的和分别为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形中,为线段的中点,如图1,沿折起至,使,如图2所示.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案