【题目】在如图所示的几何体中,四边形是正方形,平面,分别是线段的中点,.
(1)求证:∥平面;
(2)求平面与平面所成锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知函数,其中常数.
(1)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数,求函数的解析式;
(2)若在上单调递增,求的取值范围;
(3)在(1)的条件下的函数的图像,区间且满足:在上至少含有30个零点,在所有满足上述条件的中,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.
(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,写出的单调递增区间(不需写出推证过程);
(2)当时,若直线与函数的图象相交于两点,记,求的最大值;
(3)若关于的方程在区间上有两个不同的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com