【题目】记无穷数列的前项中最大值为,最小值为,令.
(1)若,写出,,,的值;
(2)设,若,求的值及时数列的前项和;
(3)求证:“数列是等差数列”的充要条件是“数列是等差数列”.
【答案】(1),(2)见解析(3)见解析
【解析】
(1)分别计算出,,,结合题意即可得b1,b2,b3,b4的值;
(2)由新定义,可得λ>0,考虑三种情况求得λ,检验可得所求λ;进而得到bn,由数列的分组求和,可得所求和;
(3)充分性易证,无论d为何值,始终有bn,即可证得结果,必要性须分类证明.
解:(1) 因为,所以,
所以,
(2),
当时,,无解;
当时,,无解;
当时,,解得;
当时,无解,
此时,
当时,,
所以当时递增,
,
所以当时,
(3)必要性:数列是等差数列,设其公差为.
当时是递增数列;当时是常数列;当时,是递减数列;
都有,
所以数列是等差数列.
充分性:数列是等差数列,设其公差为
则,
由题意知,,
当时,对任意都成立,
即,所以是递增数列,
,
所以是公差为的等差数列,
当时,,进而
所以是递减数列,,
,
所以是公差为的等差数列
当时,,
因为与中至少有一个为,所以二者都为,
进而得为常数列,
综上,充分性成立.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的参数方程;
(2)若曲线与曲线,在第一象限分别交于两点,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线:过点.
(1)求抛物线的方程;
(2)设为轴上一点,为抛物线上任意一点,求的最小值;
(3)过抛物线的焦点,作相互垂直的两条弦和,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的四个顶点组成的四边形的面积为,且经过点.
(1)求椭圆的方程;
(2)若椭圆的下顶点为,如图所示,点为直线上的一个动点,过椭圆的右焦点的直线垂直于,且与交于两点,与交于点,四边形和的面积分别为.求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是圆上的任意一点,是过点且与轴垂直的直线,是直线与轴的交点,点在直线上,且满足.当点在圆上运动时,记点的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,过的直线交曲线于两点,交直线于点.判定直线的斜率是否依次构成等差数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,且椭圆过点.
(1)求椭圆的标准方程;
(2)设直线与交于,两点,点在上,是坐标原点,若,判断四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园有个池塘,其形状为直角△ABC,,AB的长为2百米,BC的长为1百米.
(1)若准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D、E、F,如图(1),使得,,在△DEF内喂食,求当△DEF的面积取最大值时EF的长;
(2)若准备建造一个荷塘,分别在AB、BC、CA上取点D、E、F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,记,求△DEF边长的最小值及此时的值.(精确到1米和0.1度)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com