精英家教网 > 高中数学 > 题目详情
抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为2
5
,求该抛物线的方程,并写出它的焦点坐标与准线方程.
分析:根据公共弦长为2
5
,设M(m,-
5
)、N(m,
5
),代入圆方程解出m=±2,从而得出点M、N的坐标.再设抛物线方程为x2=2ay(a≠0),代入M、N坐标解出a值,即可得到抛物线的方程,进而可得抛物线的焦点坐标与准线方程.
解答:解:精英家教网∵抛物线与圆x2+y2=9相交,公共弦MN的长为2
5

∴设M(m,-
5
)、N(m,
5
).
将M、N坐标代入圆方程,得m2+5=9,解得m=±2(舍负),
∴M(2,-
5
)、N(2,
5
),或M(-2,-
5
)、N(-2,
5
),
设抛物线方程为x2=2ay(a≠0),
∵点M、N在抛物线上,
∴5=2a×(±2),解得2a=±
5
2

故抛物线的方程为x2=
5
2
y或x2=-
5
2
y.
抛物线x2=
5
2
y的焦点坐标为(0,
5
8
),准线方程为y=-
5
8

抛物线x2=-
5
2
y的焦点坐标为(0,-
5
8
),准线方程为y=
5
8
点评:本题已知抛物线与圆相交所得的弦长,求抛物线的方程.着重考查了直线与圆的位置关系、抛物线的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+4=0上,则此抛物线方程为
y2=-16x或x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是(  )
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+2=0上,则此抛物线方程为
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网实轴长为4
3
的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且AF1⊥AF2,△AF1F2的面积为3.
(Ⅰ)求椭圆和抛物线的标准方程;
(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若
AC
=2
AB
,求直线l的斜率k.

查看答案和解析>>

同步练习册答案