已知函数,,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
(1)(2)
【解析】
试题分析:解:∵,其定义域为,
∴.
∵是函数的极值点,∴,
即.
∵,∴.
(2) 对任意的都有≥成立等价于对任意的
都有≥.
当[1,]时,.
∴函数在上是增函数.
∴.
∵,且,.
①当且[1,]时,,
∴函数在[1,]上是增函数,
∴.
由≥,得≥,
又,∴不合题意.
②当1≤≤时,
若1≤<,则,
若<≤,则.
∴函数在上是减函数,在上是增函数.
∴.
由≥,得≥,
又1≤≤,∴≤≤.
③当且[1,]时,,
∴函数在上是减函数.∴.
由≥,得≥,
又,∴.
综上所述,的取值范围为.
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。
科目:高中数学 来源: 题型:
(1)求ω的取值范围;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=,b+c=3(b>c),当ω最大时,f(A)=1,求边b,c的长.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省五校联盟高三下学期第一次联考文科数学试卷(解析版) 题型:解答题
已知,函数,,(其中e是自然对数的底数,为常数),
(1)当时,求的单调区间与极值;
(2)是否存在实数,使得的最小值为3. 若存在,求出的值,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学文卷 题型:解答题
(本小题满分14分)
已知函数,.(其中为自然对数的底数),
(Ⅰ)设曲线在处的切线与直线垂直,求的值;
(Ⅱ)若对于任意实数≥0,恒成立,试确定实数的取值范围;
(Ⅲ)当时,是否存在实数,使曲线C:在点
处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年天津市高三十校联考理科数学 题型:解答题
.(14分)已知函数,,其中
(Ⅰ)若是函数的极值点,求实数的值
(Ⅱ)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com