精英家教网 > 高中数学 > 题目详情

【题目】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

≥5

概率

0.30

0.15

0.20

0.20

0.10

0.05


(1)求一续保人本年度的保费高于基本保费的概率;
(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(3)求续保人本年度的平均保费与基本保费的比值.

【答案】
(1)解:∵某保险的基本保费为a(单位:元),

上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,

∴由该险种一续保人一年内出险次数与相应概率统计表得:

一续保人本年度的保费高于基本保费的概率:

p1=1﹣0.30﹣0.15=0.55.


(2)解:设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,

由题意P(A)=0.55,P(AB)=0.10+0.05=0.15,

由题意得若一续保人本年度的保费高于基本保费,

则其保费比基本保费高出60%的概率:

p2=P(B|A)= = =


(3)解:由题意,续保人本年度的平均保费与基本保费的比值为:

=1.23,

∴续保人本年度的平均保费与基本保费的比值为1.23


【解析】(1)上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(2)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意求出P(A),P(AB),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率.(3)由题意,能求出续保人本年度的平均保费与基本保费的比值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai , 若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.
(1)求你的幸运数字为3的概率;
(2)若k=1,则你的得分为5分;若k=2,则你的得分为3分;若k=3,则你的得分为1分;若抛掷三次还没找到你的幸运数字则记0分,求得分X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为上任一点轴上的射影为中点为

(1)求动点的轨迹的方程;

(2)直线从下到上依次交于,与交于,直线从下到上依次交于,与交于的斜率之积为,设的面积分别为,是否存在使得成等比数列?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的最大值和最小值;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知满足为常数),若最大值为3,则=( )

A. 2 B. 1 C. 4 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B,C,D为平面四边形ABCD的四个内角.

(1)证明:tan =
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x﹣1﹣alnx,g(x)= ,a<0,且对任意x1 , x2∈[3,4](x1≠x2),|f(x1)﹣f(x2)|<| |的恒成立,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1x2=y,圆C2x2+y﹣42=1的圆心为点M

1)求点M到抛物线C1的准线的距离;

2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1AB两点,若过MP两点的直线l垂直于AB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间[﹣3,3]上的单调函数f(x)满足:对任意的x∈[﹣3,3],都有f(f(x)﹣2x)=6,则在[﹣3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案