精英家教网 > 高中数学 > 题目详情
5.如图,在四棱锥P-ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC的中点.
(Ⅰ)证明:ND∥面PAB;
(Ⅱ)求AN与面PND所成角的正弦值.

分析 (Ⅰ)取PB中点M,连结AM,MN,证明:四边形AMND是平行四边形,得出ND∥AM,即可证明ND∥面PAB;
(Ⅱ)在面PAD内过A做AF⊥PD于F,则CD⊥AF,又CD∩PD=D,AF⊥面PDC,连接NF,则∠ANF是AN与面PND所成的角,即可求AN与面PND所成角的正弦值.

解答 (Ⅰ)证明:如图,取PB中点M,连结AM,MN.
∵MN是△BCP的中位线,∴MN平行且等于$\frac{1}{2}$BC.    (1分)
依题意得,AD平行且等于$\frac{1}{2}$BC,则有AD平行且等于MN(2分)
∴四边形AMND是平行四边形,∴ND∥AM(3分)
∵ND?面PAB,AM?面PAB,∴ND∥面PAB(5分)
(Ⅱ)解:取BC的中点E,则$AD\underline{\underline{∥}}CE$,所以四边形AECD是平行四边形,
所以CD∥AE,又因为AB=AC,所以AE⊥BC,所以CD⊥BC,
又BC∥AD,所以CD⊥AD(6分)

PA⊥面ABCD,CD?面ABCD,所以PA⊥CD(7分)
又PA∩AD=A,所以CD⊥面PAD.(8分)
在面PAD内过A做AF⊥PD于F,则CD⊥AF,又CD∩PD=D,AF⊥面PDC,连接NF,则∠ANF是AN与面PND所成的角.(10分)
在Rt△ANF中,$AN=\frac{1}{2}PC=\frac{5}{2}$,$AF=\frac{4×2}{{\sqrt{16+4}}}=\frac{{4\sqrt{5}}}{5}$,$sin∠ANF=\frac{AF}{AN}=\frac{{8\sqrt{5}}}{25}$,
所以AN与面PND所成角的正弦值为$\frac{{8\sqrt{5}}}{25}$(12分)

点评 本题考查线面平行的证明,考查线面角,考查学生分析解决问题的能力,正确作出线面角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.椭圆$\frac{x^2}{2}+\frac{y^2}{4}=2$的焦距为(  )
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知ax+by≤a-x+b-y(1<a<b),则(  )
A.x+y≥0B.x+y≤0C.x-y≤0D.x-y≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}满足a1=$\frac{1}{2}$,an+1=3an+1,数列{an}的前n项和为Sn,则S2016=(  )
A.$\frac{{3}^{2015}-2016}{2}$B.$\frac{{3}^{2016}-2016}{2}$C.$\frac{{3}^{2015}-2017}{2}$D.$\frac{{3}^{2016}-2017}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若实数m,n满足等式$f(n-3)+f(\sqrt{4m-{m^2}-3})=0$,则$\frac{n}{m}$的取值范围是(  )
A.$[2-\frac{{2\sqrt{3}}}{3},2+\frac{{2\sqrt{3}}}{3}]$B.$[1,2+\frac{{2\sqrt{3}}}{3}]$C.$[2-\frac{{2\sqrt{3}}}{3},3]$D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=(m2-m-1)xm是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值为(  )
A.m=-1或m=2B.m=2C.m=-1D.m=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若y=f(x)的图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),然后把图象向左平移$\frac{π}{2}$个单位,再把图象上所有点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变),这样得到的图象与y=sinx的图象相同,则f(x)等于(  )
A.$\frac{1}{2}$sin($\frac{x}{2}$-$\frac{π}{2}$)B.2sin($\frac{x}{2}$-$\frac{π}{2}$)C.$\frac{1}{2}$sin(2x-$\frac{π}{2}$)D.2sin(2x-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某电视竞赛截面设置了先后三道程序,优、良、中,若选手在某道程序中获得“中”,则该选手在本道程序中不通过,且不能进入下面的程序,选手只有全部通过三道程序才算通过,某选手甲参加了该竞赛节目,已知甲在每道程序中通过的概率为$\frac{3}{4}$,每道程序中得优、良、中的概率分别为p1,$\frac{1}{2}$,p2
(1)求甲不能通过的概率;
(2)设ξ为在三道程序中获优的次数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$z=\frac{3+7i}{i}$的实部与虚部分别为(  )
A.7,-3B.7,-3iC.-7,3D.-7,3i

查看答案和解析>>

同步练习册答案