精英家教网 > 高中数学 > 题目详情
18.已知f(x)=x5+x,若a+b>0,b+c>0,c+a>0,则f(a)+f(b)+f(c)0(填<、=、>、≤).

分析 容易判断f(x)在R为奇函数且为增函数,从而由已知得到a>-b,b>-c,c>-a,根据单调性及奇偶性便得到f(a)>-f(b),f(b)>-f(c),f(c)>-f(a),这几个不等式相加即可得出f(a)+f(b)+f(c)>0.

解答 解:根据奇函数及单调性定义知,f(x)为奇函数且在R上为增函数;
由a+b>0,b+c>0,c+a>0得:a>-b,b>-c,c>-a;
∴f(a)>-f(b),f(b)>-f(c),f(c)>-f(a);
∴f(a)+f(b)+f(c)>-f(a)-f(b)-f(c);
∴f(a)+f(b)+f(c)>0.
故答案为:>.

点评 考查奇函数及增函数的定义,以及不等式的性质:同向的不等式可以相加,不等号方向不变.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.甲、乙两药厂生产同一型号药品,在某次质量检测中,两厂各有5份样品送检,检测的平均得分相等(检测满分为100分,得分高低反映该样品综合质量的高低).成绩统计用茎叶图表示如下:则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设l1,l2,l3为空间中三条互相平行且两两间的距离分别为4,5,6的直线.给出下列三个结论:
①存在Ai∈li(i=1,2,3),使得△A1A2A3是直角三角形;
②存在Ai∈li(i=1,2,3),使得△A1A2A3是等边三角形;
③三条直线上存在四点Ai(i=1,2,3,4),使得四面体A1A2A3A4为在一个顶点处的三条棱两两互相垂直的四面体.其中,所有正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C经过点A(-$\sqrt{3}$,0),圆心落在x轴上(圆心与坐标原点不重合),且与直线l1:x+$\sqrt{3}$y-2$\sqrt{3}$=0 相切.
(Ⅰ)求圆C的标准方程;
(Ⅱ)求直线Y=X被圆C所截得的弦长;
(Ⅲ)l2是与l1垂直并且在Y轴上的截距为b的直线,若l2与圆C有两个不同的交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$cos(\frac{π}{6}-a)=\frac{{\sqrt{3}}}{3}$,求$cos(\frac{5π}{6}+a)-{sin^2}(a-\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从4个男生,3个女生中挑选4人参加智力竞赛,要求至少有一个女生参加的选法共有(  )
A.12种B.34种C.35种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}|lo{g}_{3}x|,0<x<3\\ sin\frac{π}{3}x,3≤x≤9\end{array}\right.$,若存在实数a,b,c,d满足a<b<c<d,且f(a)=f(b)=f(c)=f(d),则$\frac{(c-3)(d-3)}{ab}$的取值范围是(18,$\frac{81}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+$\frac{1}{4}$b2x(a,b∈R),若|a-1|+|b-1|≤1,求f′(x)在R上有零点的概率(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α、β、γ是平面,a、b是直线,且α∩β=a,α⊥γ,β⊥γ,b?γ,则(  )
A.a∥bB.a⊥b
C.a与b相交D.不能确定a与b的关系

查看答案和解析>>

同步练习册答案