【题目】已知函数f(x)= 满足对任意x1≠x2 , 都有 <0成立,则a的取值范围是 .
【答案】(0, ]
【解析】解:∵对任意x1≠x2,都有 <0成立;∴f(x1)﹣f(x2)与x1﹣x2异号,
即x1﹣x2<0时,f(x1)﹣f(x2)>0,即x1<x2时,f(x1)>f(x2);∴函数f(x)在R上是减函数;∴x<0时,f(x)=ax,0<a<1;
x≥0时,f(x)=(a﹣3)x+4a,a﹣3<0,a<3,又ax>1,(a﹣3)x+4a)max=4a≤1,∴ ;
又0<a<1,∴0<a≤ ;∴a的取值范围是 .
所以答案是: .
【考点精析】根据题目的已知条件,利用函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,底面 是菱形, , 平面 , , , , 是 中点.
(I)求证:直线 平面 .
(II)求证:直线 平面 .
(III)在 上是否存在一点 ,使得二面角 的大小为 ,若存在,确定 的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣ +cx+d有极值.
(Ⅰ)求实数c的取值范围;
(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)< +2d恒成立,求实数d的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x= 时,函数f(x)取得最小值,则下列结论正确的是( )
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinxcosx﹣cos2x﹣ .
(Ⅰ)求函数f(x)的对称轴方程;
(Ⅱ)将函数f(x)的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移 个单位,得到函数g(x)的图象.若a,b,c分别是△ABC三个内角A,B,C的对边,a=2,c=4,且g(B)=0,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:已知函数f(x)=﹣ +2ax,
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;
(Ⅱ)若a=1,求f(x)的极值;
(Ⅲ)当0<a<2时,f(x)在[1,4]上的最小值为﹣ ,求f(x)在该区间上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}定义为a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整数i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A、B两点,M是AB 的中点,过M作x 轴的垂线交C于N点.
(Ⅰ)证明:抛物线C在N 点处的切线与AB 平行;
(Ⅱ)是否存在实数k,使以AB为直径的圆M经过N点?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com