精英家教网 > 高中数学 > 题目详情
12.已知椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,点F为右焦点,直线1与圆x2+y2=3相切于点Q,且Q位于y轴的右侧,直线l交椭圆于相异两点A,B,如图所示,则|AF|+|AQ|的值为(  )
A.4B.1C.2D.3

分析 设A(x1,y1),(x1>0),连接OA,OQ,则|AQ|2=${x}_{1}^{2}+{y}_{1}^{2}-3$,|AF|2=${{(x}_{1}^{\;}-1)}^{2}+{y}_{1}^{2}$,结合${y}_{1}^{2}=3-\frac{{3{x}_{1}}^{2}}{4}$,化简可得答案.

解答 解:设A(x1,y1),(x1>0),
连接OA,OQ,在△OAQ中,|AQ|2=${x}_{1}^{2}+{y}_{1}^{2}-3$,
∵|AF|2=${{(x}_{1}^{\;}-1)}^{2}+{y}_{1}^{2}$,
又由${y}_{1}^{2}=3-\frac{{3{x}_{1}}^{2}}{4}$得:
|AQ|2=${\frac{1}{4}x}_{1}^{2}$,即|AQ|=$\frac{1}{2}$x1
|AF|2=${\frac{1}{4}x}_{1}^{2}-2{x}_{1}+4$,即|AF|=2-$\frac{1}{2}$x1
∴|AF|+|AQ|=2,
故选:C.

点评 本题考查的知识点是椭圆的简单性质,直线与圆锥曲线的关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.平行于直线2x+y+1=0且与圆(x-1)2+y2=5相切的直线的方程是2x+y+3=0或2x+y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.方程$\frac{{x}^{2}}{{25-m}$+$\frac{{y}^{2}}{{16+m}$=1表示焦点在y轴上的椭圆,则m的取值范围是($\frac{9}{2}$,25).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{2b-c}{a}=\frac{cosC}{cosA}$
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,求b2+c2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=6,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,则$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点,若|AF|十|BF|=4,点M到直线l的距离不小于$\frac{4}{5}$,则椭圆E的离心率的取值范围是(0,$\frac{\sqrt{3}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若向量$\overrightarrow{a}$的一种正交分解是$\overrightarrow{a}$=λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$(λ1,λ2∈R),则正确的是(4)
(1)$\overrightarrow{{e}_{1}}$=$\overrightarrow{{e}_{2}}$(2)|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|(3)$\overrightarrow{{e}_{1}}$∥$\overrightarrow{{e}_{2}}$(4)$\overrightarrow{{e}_{1}}$⊥$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某工厂购买了一套价值200万元的新设备,按每年10%的折旧率折旧,经过7年后价值为原来的50%(用代数式表示,并化简,精确到1年)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,三边分别为a=2,b=3,c=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案