分析 (Ⅰ)根据二次函数的性质得到△=0,求出a的值即可;(Ⅱ)根据函数单调性的定义证明函数的单调性即可.
解答 解:(Ⅰ)由$xf({\frac{1}{x}})=4x-3$,得$x({ax+\frac{1-a}{x}})=4x-3$,
又a≠0,即二次方程ax2-4x+4-a=0有且仅有一个实数根(且该实数根非零),
所以△=(-4)2-4a(4-a)=0,
解得a=2(此时实数根非零).
(Ⅱ)由(Ⅰ)得:函数解析式$f(x)=\frac{2}{x}-x$,
任取0<x1<x2,
则f(x1)-f(x2)
=$\frac{{2({x_2}-{x_1})}}{{{x_1}{x_2}}}+({x_2}-{x_1})$
=$({x_2}-{x_1})•\frac{{({2+{x_1}{x_2}})}}{{{x_1}{x_2}}}$,
∵0<x1<x2,∴x2-x1>0,2+x1x2>0,x1x2>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴函数f(x)在区间(0,+∞)上单调递减.
点评 本题考查了函数的单调性的证明,考查二次函数的性质,是一道中档题.
科目:高中数学 来源: 题型:选择题
A. | 1-$\frac{π}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({-1,-\frac{1}{2018}})$ | B. | $({0,\frac{1}{-2017}})$ | C. | $({1,\frac{1}{-2016}})$ | D. | $({2,\frac{1}{-2015}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,1,-5) | B. | (-2,-1,-5) | C. | (2,-1,5) | D. | (2,1,-5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com