【题目】是否存在12个集合,,,和4098个集合满足下列三个条件:(1);(2)当时,;(3)当时,?
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,上顶点为,离心率为,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知为坐标原点,过点的直线与椭圆交于,两点,点在椭圆上,若,试判断是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形中,,,点在线段上,且,现将沿折到的位置,连结,,如图2.
(1)若点在线段上,且,证明:;
(2)记平面与平面的交线为.若二面角为,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为平面上个点的集合,其中任三点不共线,任四点不共圆.一个圆被称为“好圆”是指中有三个点在圆上,个点在圆内,个点在圆外.求证:好圆的个数与有相同的奇偶性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂共有员工5000人,现从中随机抽取100位员工,对他们每月完成合格产品的件数进行统计,统计表格如下:
(1)工厂规定:每月完成合格产品的件数超过3200件的员工,会被评为“生产能手”称号.由以上统计数据填写下面的列联表,并判断是否有95%的把握认为“生产能手”称号与性别有关?
(2)为提高员工劳动的积极性,该工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的(包括2600件),计件单价为1元;超出(0,200]件的部分,累进计件单价为1.2元;超出(200,400]件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段的频率视为相应的概率,在该厂男员工中随机选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)超过3100元的人数为,求的分布列和数学期望.
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面为等腰梯形,,,,丄底面.
(1)证明:平面平面;
(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com