精英家教网 > 高中数学 > 题目详情

【题目】是否存在12个集合和4098个集合满足下列三个条件:(1);(2)当时,;(3)当时,

【答案】存在

【解析】

表示有个集合,,,个集合,,,符合题设条件的一个集合圈,用表示的所有元素与中的第个元素组成的一个集合.

,,,满足题设条件,则

1.当为奇数时,就是一个集合圈(这里第二个分量交替取1,2);

2.当为偶数时, 是一个集合圈,其中,表示不大于的偶数,并且除了对应的第二个分量取值为3外,其余所对应的第二个分量都交替地取1,2.

显然,有集合圈.

根据上面构造新集合圈的方法,可依次得到集合圈:

.

故存在12个集合和4098个集合构成的集合圈.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,上顶点为,离心率为,且

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,过点的直线与椭圆交于两点,点在椭圆上,若,试判断是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为自然对数的底数).

(Ⅰ)求函数的单调区间;

(Ⅱ)若,试求函数极小值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形中,,点在线段上,且,现将沿折到的位置,连结,如图2.

1)若点在线段上,且,证明:

2)记平面与平面的交线为.若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为平面上个点的集合其中任三点不共线任四点不共圆一个圆被称为“好圆”是指中有三个点在圆上个点在圆内个点在圆外求证好圆的个数与有相同的奇偶性

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,平面,点分别为中点.

1)求证:直线平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂共有员工5000人,现从中随机抽取100位员工,对他们每月完成合格产品的件数进行统计,统计表格如下:

(1)工厂规定:每月完成合格产品的件数超过3200件的员工,会被评为“生产能手”称号.由以上统计数据填写下面的列联表,并判断是否有95%的把握认为“生产能手”称号与性别有关?

(2)为提高员工劳动的积极性,该工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的(包括2600件),计件单价为1元;超出(0,200]件的部分,累进计件单价为1.2元;超出(200,400]件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段的频率视为相应的概率,在该厂男员工中随机选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)超过3100元的人数为,求的分布列和数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为等腰梯形,丄底面.

(1)证明:平面平面

(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)对于任意时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案