精英家教网 > 高中数学 > 题目详情
18.已知抛物线C:y2=2x的焦点为F,A(x0,y0)是C上一点,|AF|=$\frac{3}{2}$x0,则x0=(  )
A.1B.2C.4D.8

分析 求出抛物线的准线方程,由抛物线的定义,解方程,即可得到所求值.

解答 解:抛物线方程为y2=2x,
准线方程为x=-$\frac{1}{2}$,
由抛物线的定义,可得|AF|=x0+$\frac{1}{2}$=$\frac{3}{2}$x0
解得,x0=1.
故选A.

点评 本题考查抛物线的方程和性质,考查抛物线的定义及运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C所对的边分别为a、b、c.已知a=2acosAcosB-2bsin2A.
(1)求C;
(2)若△ABC的面积为$\frac{{15\sqrt{3}}}{4}$,周长为 15,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列结论:
①已知函数f(x)是定义在R上的奇函数,若f(-1)=2,f(-3)=-1,则f(3)<f(-1);
②函数y=log${\;}_{\frac{1}{2}}$(x2-2x)的单调递增减区间是(-∞,0);
③已知函数f(x)是奇函数,当x≥0时,f(x)=x2,则当x<0时,f(x)=-x2
④若函数y=f(x)的图象与函数y=ex的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).
则正确结论的序号是①③④(请将所有正确结论的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等比数列{an}的公比为正数,且a1•a7=2a32,a2=2,则a1的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的前n项和为Sn,公差d≠0,且S1+S3=18,a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)设{$\frac{{a}_{n}}{{b}_{n}}$}是首项为1,公比为$\frac{1}{3}$的等比数列,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某中学兴趣小组为调查该校学生对学校食堂的某种食品喜爱与否是否与性别有关,随机询问了100名性别不同的学生,得到如下的2×2列联表:
  男生 女生 总计
 喜爱 3020  50
 不喜爱 20 30 50
 总计 50 50 100
附K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.024 6.635
根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?(  )
A.99%以上B.97.5%以上C.95%以上D.85%以上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某学习小组20名学生一次数学考试成绩(单位:分)频率直方图如图所示,已知前三个矩形框垂直于横轴的高度成等差数列.
(1)求频率分布直方图中a的值;
(2)分别求出成绩落在[50,60)与[80,90)中的学生人数;
(3)从成绩在[50,60)与[80,90)中的学生中人选2人,求此2人的成绩相差20分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x>0,y>0,$\frac{4}{x}$+$\frac{1}{y}$=$\frac{1}{4}$,则x+4y的最小值为64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=4x,过焦点F的直线l与抛物线C交于A,B两点,定点M(5,0).
(Ⅰ)若直线l的斜率为1,求△ABM的面积;
(Ⅱ)若△AMB是以M为直角顶点的直角三角形,求直线l的方程.

查看答案和解析>>

同步练习册答案