精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求的单调区间,如果函数仅有两个零点,求实数的取值范围;
(2)当时,试比较与1的大小.

(1)    
(2)? ?当
?

解析试题分析:(Ⅰ)当时,,定义域是
, 令,得.                         
时,,当时,
函数上单调递增,在上单调递减.  
的极大值是,极小值是
时,;当时,
仅有一个零点时,的取值范围是  
(2)当=2时,定义域为(0,+).
令h(x)=-1=-1,
,  
?
?当
? 
考点:函数的零点 利用导数研究函数的极值
点评:本题主要考查函数导数运算法则、利用导数求函数的极值、证明不等式等基础知识,考查分类讨论思想和数形结合思想,考查考生的计算能力及分析问题、解决问题的能力和创新意识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

市内电话费是这样规定的,每打一次电话不超过3分钟付电话费0.18元,超过3分钟而不超过6分钟的付电话费0.36元,依次类推,每次打电话分钟应付话费y元,写出函数解析式并画出函数图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像如右所示。
(1)求证:在区间为增函数;
(2)试讨论在区间上的最小值.(要求把结果写成分段函数的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 当时, 求函数的单调增区间;
(2)当时,求函数在区间上的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在与轴交点处的切线方程是.
(Ⅰ)求函数的解析式;
(Ⅱ)设函数,若的极值存在,求实数的取值范围以及当取何值时函数分别取得极大和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(I) 解关于的不等式
(II)若函数的图象恒在函数的上方,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,满足.    (1) 求函数的单调递增区间;
(2)设三内角所对边分别为,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

时,幂函数为减函数,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的一个极值点.
(1)求的单调递增区间;
(2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案