精英家教网 > 高中数学 > 题目详情

【题目】已知函数是偶函数,且.

(1)求的值;

(2)求函数上的值域.

【答案】1;(2.

【解析】试题分析:(1)由偶函数定义知恒成立,由此可求,由可求;(2)根据图象平移可得的解析式,根据二次函数的性质可求值域.

试题解析:(1)是偶函数

(2)由(1)知,

即函数上单调递增,在上单调递减.

时,有

时,有

∴函数上的值域为.

点睛:本题考查求函数的解析式,函数的值域. 二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数). 找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C极坐标方程: ,点P极坐标为 ,直线l过点P,且倾斜角为
(1)求曲线C的直角坐标方程及直线l参数方程;
(2)若直线l与曲线C交于A,B两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性;

(2)判断并证明))上的单调性;

(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ (a>0)
(1)若函数f(x)在x=2处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)在区间[1,2]上的单调性;
(3)证明: >e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】( 本小题满分14)

如图,在三棱锥PABC中,PC底面ABCABBCDE分别是ABPB的中点.

(1)求证:DE平面PAC

(2)求证:ABPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,若不等式 对任意的 恒成立,则整数λ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 直径, 所在的平面, 是圆周上不同于的动点.

(1)证明:平面平面

(2)若,且当二面角的正切值为时,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[﹣2,2]上的函数f(x)满足f(x)+f(﹣x)=0,且 ,若f(1﹣t)+f(1﹣t2)<0,则实数t的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是边长为2的正方形, 分别为线段 的中点.

(1)求证: ||平面

(2)四棱柱的外接球的表面积为,求异面直线所成的角的大小.

查看答案和解析>>

同步练习册答案