精英家教网 > 高中数学 > 题目详情
19.斜率为-2,且过两条直线3x-y+4=0和x+y-4=0交点的直线方程为2x+y-4=0.

分析 联立已知两直线的方程,解方程组可得交点,进而根据点斜式,可得直线的方程.

解答 解:联立$\left\{\begin{array}{l}{3x-y+4=0}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=4}\end{array}\right.$,
∴两条直线3x-y+4=0和x+y-4=0交点坐标为(0,4),
∵斜率为-2,
∴y-4=-2x,即2x+y-4=0,
故答案为:2x+y-4=0

点评 本题考查直线的方程和直线的交点坐标,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=1.
(1)求|$\overrightarrow{a}$+$\overrightarrow{b}$|和|$\overrightarrow{a}$-$\overrightarrow{b}$|的值;
(2)求两向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\frac{1}{2}$x与y=||x-a|-1|的图象有三个公共点,则a=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,且b2+c2-$\sqrt{2}$bc=a2
(1)求角A;
(2)若a=$\sqrt{3}$,cosB=$\frac{4}{5}$,求该三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x2+2x+a-1,当x∈(-∞,-3)时,f(x)>0恒成立.则实数a的取值范围是(  )
A.a>-2B.a≥-2C.a>2D.a≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=cos(3x+$\frac{π}{3}$),其中x∈[$\frac{π}{6}$,m],若f(x)的值域是[-1,-$\frac{\sqrt{3}}{2}$],则m的取值范围是$\frac{2π}{9}$≤m≤$\frac{5π}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.令函数f(x)=x2+ax+a-$\frac{3}{a}$(a≠0)且-1≤x≤1.
(1)当a=1时,求f(x)的取值范围;
(2)对任意实数x,在-1≤x≤1内始终有f(x)≤0,求a的取值范围;
(3)当a≥2时,有实数x使得f(x)≤0.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在三角形ABC中,sin(A-B)=$\frac{1}{5}$,sinC=$\frac{3}{5}$,求证:tanA=2tanB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列关系中正确的是(  )
A.$\sqrt{3}$∈QB.{$\sqrt{3}$}∉QC.$\sqrt{3}$⊆RD.{$\sqrt{3}$}⊆R

查看答案和解析>>

同步练习册答案