分析 函数y=f(x)-g(x)恰好有四个零点可化为函数y=f(x)+f(2-x)与y=b的图象有四个交点,从而化简y=f(x)+f(2-x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,x<0}\\{2,0≤x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$,作图象求解.
解答 解:∵f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,
∴f(2-x)=$\left\{\begin{array}{l}{2-|2-x|,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,
∵函数y=f(x)-g(x)恰好有四个零点,
∴方程f(x)-g(x)=0有四个解,
即f(x)+f(2-x)-b=0有四个解,
即函数y=f(x)+f(2-x)与y=b的图象有四个交点,
y=f(x)+f(2-x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,x<0}\\{2,0≤x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$,
作函数y=f(x)+f(2-x)与y=b的图象如下,
,
f($\frac{1}{2}$)+f(2-$\frac{1}{2}$)=f($\frac{5}{2}$)+f(2-$\frac{5}{2}$)=$\frac{7}{4}$,
结合图象可知,
$\frac{7}{4}$<b<2,
故答案为:($\frac{7}{4}$,2).
点评 本题考查了分段函数的应用及数形结合的思想应用,同时考查了函数的零点与函数的图象的交点的关系应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{7}{5}$ | D. | -$\frac{7}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com