精英家教网 > 高中数学 > 题目详情
19.如图为正方体ABCD-A1B1C1D1的平面展开图,其中E、M、N分别为A1D1、BC、CC1的中点,
(Ⅰ) 作出该正方体的直观图;
(Ⅱ) 求证:MN∥平面BEC1

分析 (Ⅰ)根据该正方体的平面展开图及斜二测画法即可作出该正方体的水平放置的直观图;
(Ⅱ)根据中位线的性质便有MN∥BC1,从而得出MN∥平面BEC1

解答 解:(Ⅰ)该正方体的水平放置直观图如下图所示:

(Ⅱ)证明:M,N分别为BC,CC1的中点;
∴MN∥BC1,BC1?平面BEC1,MN?平面BEC1
∴MN∥平面BEC1

点评 本题主要考查正方体的水平放置的直观图的画法,由立体图形的平面展开图,可以画出其水平放置的直观图,以及中位线的性质,线面平行的判定定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知映射f:A→B,其中A=B=R,对应法则f:x→y=($\frac{1}{3}$)x2+2x,对于实数m∈B在集合A中存在元素与之对应,则m的取值范围是(  )
A.m≤3B.m≥3C.m>3D.0<m≤3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,$acosC+\sqrt{3}asinC-b-c=0$
(Ⅰ)求A;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设点P(x,y)是曲线a|x|+b|y|=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足$\sqrt{{x^2}+{y^2}+4x+4}+\sqrt{{x^2}+{y^2}-4x+4}≤8$,则$2a+\sqrt{3}b$的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,在其定义域内既是奇函数,又是减函数的是(  )
A.$f(x)=\frac{1}{x}$B.$f(x)=\sqrt{-x}$C.f(x)=2-x-2xD.$f(x)={log_{\frac{1}{2}}}|x|$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若奇函数f(x)在区间[4,9]上是减函数且最小值为2,则f(x)在区间[-9,-4]上是(  )
A.增函数且最大值为-2B.增函数且最小值为-2
C.减函数且最小值为-2D.减函数且最大值为-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.命题P:y=ln(x2-kx+2)的定义域为R;命题q:x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则$\frac{(a+b)^{2}}{cd}$≥k+1恒成立,若命题p∨q为真命题,p∧q为假命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)•f(y)=f(x+y)成立,若数列{an}满足f(an+1)=$\frac{1}{f(\frac{1}{1+{a}_{n}})}$,(n∈N+)且a1=f(0),则下列结论成立的是(  )
A.f(a2013)>f(a2016B.f(a2014)>f(a2015C.f(a2016)<f(a2015D.f(a2014)<f(a2016

查看答案和解析>>

同步练习册答案