精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,E为BC上的动点.

(1)当E为BC的中点时,求证:PE⊥DE;
(2)设PA=1,在线段BC上存在这样的点E,使得二面角P﹣ED﹣A的平面角大小为 .试确定点E的位置.

【答案】
(1)证明:以为原点,AB,AD,AP所在直线为x,y,z轴,建立空间直角坐标系,如图.

不妨设AP=a,则P(0,0,a),E(1,1,0),D(0,2,0),

从而

于是 =(1,1,﹣a)(1,﹣1,0)=0,

所以 ,所以PE⊥DE


(2)解:设BE=x,则P(0,0,1),E(1,x,0),D(0,2,0),

向量 为平面AED的一个法向量.设平面PDE的法向量为

则应有 解之得c=2b,令b=1,则c=2,a=2﹣x,

从而

依题意 = ,即 ,解之得 (舍去),

所以点E在线段BC上距B点的


【解析】(1)建立空间直角坐标系,设AP=a,用坐标表示点与向量,证明 =0,即可证PE⊥DE;(2)设BE=x,求得向量 为平面AED的一个法向量,平面PDE的法向量 ,利用向量的夹角公式,即可求得结论.
【考点精析】本题主要考查了直线与平面垂直的性质的相关知识点,需要掌握垂直于同一个平面的两条直线平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要条件,则实数a的取值范围是(
A.(﹣2,﹣1]
B.[﹣2,﹣1]
C.[﹣3,﹣1]
D.[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出S的值为(
A.
B.
C.0
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体ABCD及其三视图如图1,2所示.

(1)求四面体ABCD的体积;
(2)若点E为棱BC的中点,求异面直线DE和AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题。
(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.
(2)写出上述命题的逆命题,并判断其真假(不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=3sin(2x+φ)的图象关于点( ,0)成中心对称(|φ|< ),那么函数f(x)图象的一条对称轴是(
A.x=﹣
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x(2﹣x),
(1)写出函数y=f(x)在x∈(﹣∞,0)时的解析式;
(2)若关于x的方程f(x)=a恰有两个不同的解,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱入孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为2cm的圆,中间有边长为0.5cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为

查看答案和解析>>

同步练习册答案