精英家教网 > 高中数学 > 题目详情
若双曲线C:x2-y2=1的右顶点为A,过A的直线l与双曲线C的两条渐近线交于P,Q两点,且
PA
=2
AQ
,则直线l的斜率为
±3
±3
分析:设l的方程为x=my+1,代入双曲线方程,利用韦达定理,结合向量知识,即可得到结论.
解答:解:双曲线的右顶点A(1,0),设l的方程为x=my+1,代入双曲线方程,可得(m2-1)y2+2my+1=0
设点P(x1,y1),Q(x2,y2),则y1+y2=
2m
1-m2
①,y1y2=
1
m2-1

PA
=2
AQ

∴y1=-2y2③,
由①②③可得m=±
1
3

∴直线l的斜率为±3
故答案为:±3.
点评:本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法:
①用“辗转相除法”求得243,135 的最大公约数是9;
②命题p:?x∈R,x2-x+
1
4
<0
,则?p是?x0∈R,x02-x0+
1
4
≥0

③已知条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q成立的充分不必要条件;
④若
a
=(1,0,1),
b
=(-1,1,0)
,则
a
b
>=
π
2

⑤已知f(n)=
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
,则f(n)中共有n2-n+1项,当n=2时,f(2)=
1
2
+
1
3
+
1
4

⑥直线l:y=kx+1与双曲线C:x2-y2=1的左支有且仅有一个公共点,则k的取值范围是-1<k<1或k=
2

其中正确的命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-y2=1,l:y=kx+1
(1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点.
(2)若Q(1,1),试判断以Q为中点的弦是否存在,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:x2-y2=1的渐近线方程为
x±y=0
x±y=0
;若双曲线C的右顶点为A,过A的直线l与双曲线C的两条渐近线交于P,Q两点,且
PA
=2
AQ
,则直线l的斜率为
±3
±3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一条曲线C在y轴右边,C上任意一点到点F1(2,0)的距离减去它到y轴距离的差都是2.
(1)求曲线C的方程;
(2)若双曲线M:x2-
y2
t
=1(t>0)的一个焦点为F1,另一个焦点为2,过F2的直线l与M相交于A、B两点,直线l的法向量为
n
=(k,-1)(k>0),且
OA
OB
=0,求k的值.

查看答案和解析>>

科目:高中数学 来源:2011年广东省广州市高考数学二模试卷(文科)(解析版) 题型:解答题

已知双曲线C:和圆O:x2+y2=b2(其中原点O为圆心),过双曲线C上一点P(x,y)引圆O的两条切线,切点分别为A、B.
(1)若双曲线C上存在点P,使得∠APB=90°,求双曲线离心率e的取值范围;
(2)求直线AB的方程;
(3)求三角形OAB面积的最大值.

查看答案和解析>>

同步练习册答案