精英家教网 > 高中数学 > 题目详情

某公园的大型中心花园的边界为椭圆,花园内种植各种花草. 为增强观赏性,在椭圆内以其中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角形斜边开辟观赏小道(其中的一条为线段). 某园林公司承接了该中心花园的施工建设,在施工时发现,椭圆边界上任意一点到椭圆两焦点的距离和为4(单位:百米),且椭圆上点到焦点的最近距离为1(单位:百米). 

(Ⅰ)以椭圆中心为原点建立如图的坐标系,求该椭圆的标准方程;

(Ⅱ)请计算观赏小道的长度(不计小道宽度)的最大值.



解:(Ⅰ) 设椭圆的方程为=1(a>b>0),

由已知,2a=4,ac=1,a=2,c=1,

b,故椭圆的标准方程=1.……3分

(Ⅱ)①若该直角三角形斜边斜率存在且不为0,

设直角三角形斜边所在直线方程为ykxm,斜边与椭圆的交点A(x1y1),B(x2y2),

联立方程组     y=kx+m

          =1

得3x2+4(kxm)2=12,即(3+4k2)x2+8kmx+4m2-12=0,

则Δ=64k2m2-4(3+4k2)(4m2-12)=48(4k2m2+3)>0,即4k2m2+3>0.

x1+ x2= - 8km

3+4k2

x1 x2=  ,       …………6分

y1y2=(kx1m)(kx2m)=k2x1x2km(x1x2)+m2k2m2

要使△AOB为直角三角形,需使x1x2y1y2=0

=0,所以7m2-12k2-12=0, …………8分

m2,故4k2m2+3=4k2+3->0,

所以|AB|=

.

当仅当16k2k=±时,等号成立. …………10分

②若该直角三角形斜率不存在或斜率为0,则斜边长为.

综上可知,观赏小道长度的最大值为2(百米). …………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)某公园的大型中心花园的边界为椭圆,花园内种植各种花草,为增强观赏性,在椭圆内以其中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角形斜边开辟观赏小道(不计小道的宽度),某园林公司承接了该中心花园的施工建设,在施工时发现,椭圆边界上任意一点到椭圆两焦点距离和为4(单位:百米),且椭圆上点到焦点的最近距离为1(单位:百米).
(1)试以椭圆中心为原点建立适当的坐标系,求出该椭圆的标准方程;
(2)请计算观赏小道的长度(不计小道宽度)的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省高三第六次模拟考试数学文卷 题型:解答题

(本小题满分12分)

某公园的大型中心花园的边界为椭圆,花园内种植各种花草. 为增强观赏性,在椭圆内以其

中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角

形斜边开辟观赏小道(其中的一条为线段). 某园林公司承接了该中心花园的施工建设,

在施工时发现,椭圆边界上任意一点到椭圆两焦点的距离和为4(单位:百米),且椭圆上点

到焦点的最近距离为1(单位:百米).

(Ⅰ)以椭圆中心为原点建立如图的坐标系,求该椭圆的标准方程;

(Ⅱ)请计算观赏小道的长度(不计小道宽度)的最大值.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:山东省模拟题 题型:解答题

某公园的大型中心花园的边界为椭圆,花园内种植各种花草,为增强观赏性,在椭圆内以其中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草,并以该直角三角形斜边开辟观赏小道(不计小道的宽度),某园林公司承接了该中心花园的施工建设,在施工时发现,椭圆边界上任意一点到椭圆两焦点距离和为4(单位:百米),且椭圆上点到焦点的最近距离为1(单位:百米),
(1)试以椭圆中心为原点建立适当的坐标系,求出该椭圆的标准方程;
(2)请计算观赏小道的长度(不计小道宽度)的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某公园的大型中心花园的边界为椭圆,花园内种植各种花草. 为增强观赏性,在椭圆内以其

中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角

形斜边开辟观赏小道(其中的一条为线段). 某园林公司承接了该中心花园的施工建设,

在施工时发现,椭圆边界上任意一点到椭圆两焦点的距离和为4(单位:百米),且椭圆上点

到焦点的最近距离为1(单位:百米).

(Ⅰ)以椭圆中心为原点建立如图的坐标系,求该椭圆的标准方程;

(Ⅱ)请计算观赏小道的长度(不计小道宽度)的最大值.

查看答案和解析>>

同步练习册答案