精英家教网 > 高中数学 > 题目详情
19.函数y=(log${\;}_{\frac{1}{4}}$x)2-log${\;}_{\frac{1}{2}}$$\sqrt{x}$+5在区间[2,4]上的最小值是$\frac{13}{2}$,此时x的值是10.

分析 设log0.5x=t(-2≤t≤-1),即有f(t)=t2-$\frac{1}{2}$t+5,结合二次函数的对称轴和区间的关系,由单调性即可得到最小值.

解答 解:设log0.5x=t(-2≤t≤-1),即有f(t)=t2-$\frac{1}{2}$t+5,
对称轴为t=$\frac{1}{4}$,f(t)min=f(-1)=$\frac{13}{2}$,f(t)max=f(-2)=10
故答案为:$\frac{13}{2}$,10.

点评 题考查函数的最值的求法,运用换元法转化为二次函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.($\frac{9}{4}$)${\;}^{\frac{1}{2}}$+($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$=3;log412-log43=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a>0,函数f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若对任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立,则实数a的取值范围是[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.经测算,某型号汽车在匀速行驶过程中每小时耗油量y(升)与速度x(千米/每小时) (50≤x≤120)的关系可近似表示为:$y=\left\{\begin{array}{l}\frac{1}{75}({{x^2}-130x+4900}),x∈[{50,80})\\ 12-\frac{x}{60},x∈[{80,120}]\end{array}\right.$
(Ⅰ)该型号汽车速度为多少时,可使得每小时耗油量最低?
(Ⅱ)已知A,B两地相距120公里,假定该型号汽车匀速从A地驶向B地,则汽车速度为多少时总耗油量最少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=1$,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,点C在∠AOB内,$\overrightarrow{OA}$与$\overrightarrow{OC}$夹角为30°,若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,(m,n∈R),则$\frac{n}{m}$的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P(-2,$\frac{\sqrt{14}}{2}$)在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,过点P作圆O:x2+y2=2的切线,切点为A,B,若直线AB恰好过椭圆C的左焦点F,则a2+b2的值是(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数f(x)=xa的图象过点(2,4),则a=2.若b=loga3,则2b+2-b=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.小明骑车上学,一路匀速行驶,只是在途中遇到了一次交通堵塞,耽搁了一些时间.与以上事物吻合得最好的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆O:x2+y2=4与y轴正半轴的交点为M,点M沿圆O顺时针运动$\frac{π}{2}$弧长到达点N,以x轴的非负半轴为始边,ON为终边的角记为α,则tanα=1.

查看答案和解析>>

同步练习册答案