【题目】已知函数.
(1)讨论函数的单调性;
(2)对任意的,恒成立,请求出的取值范围.
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
①;②; ③; ④.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平行四边形中,,,为边的中点,沿将折起使得平面平面.
(1)求证:平面平面;
(2)求四棱锥的体积;
(3)求折后直线与平面所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点为,,焦距为,直线:与椭圆相交于,两点,为弦的中点.
(1)求椭圆的标准方程;
(2)若直线:与椭圆相交于不同的两点,,,若(为坐标原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点,与关于抛物线的对称轴对称,斜率为1的直线交抛物线于、两点,且、在直线两侧.
(1)求证:平分;
(2)点为抛物线在、处切线的交点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为(为参数),圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设圆与直线交于两点,若点的直角坐标为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com