精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥PABC中,平面PBC⊥平面ABC,∠ACB90°BCPC2,若ACPB,则三棱锥PABC体积的最大值为(

A.B.C.D.

【答案】D

【解析】

PB中点M,连结CM,得到AC⊥平面PBC,设点A到平面PBC的距离为hAC2x,则CMPB,求出VAPBC,设t,(0t2),从而VAPBC,(0t2),利用导数求出三棱锥PABC体积的最大值.

解:如图,取PB中点M,连结CM

∵平面PBC⊥平面ABC,平面PBC平面ABCBCAC平面ABCACBC

AC⊥平面PBC

设点A到平面PBC的距离为hAC2x

PCBC2PB2x,(0x2),MPB的中点,

CMPBCM

解得

所以VAPBC

t,(0t2),则x24t2

VAPBC,(0t2),

关于t求导,得

所以函数在单调递增,在单调递减.

所以当t时,(VAPBCmax.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,椭圆上的点到其左焦点的最大距离为

1)求椭圆的标准方程;

2)过椭圆左焦点的直线与椭圆交于两点,直线,过点作直线的垂线与直线交于点,求的最小值和此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在《周髀算经》中,把圆及其内接正方形称为圆方图,把正方形及其内切圆称为方圆图.圆方图和方圆图在我国古代的设计和建筑领域有着广泛的应用.山西应县木塔是我国现存最古老、最高大的纯木结构楼阁式建筑,它的正面图如图所示.以该木塔底层的边作方形,会发现塔的高度正好跟此对角线长度相等.以塔底座的边作方形.作方圆图,会发现方圆的切点正好位于塔身和塔顶的分界.经测量发现,木塔底层的边不少于米,塔顶到点的距离不超过米,则该木塔的高度可能是(参考数据:)(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点且渐近线为,则下列结论错误的是(

A.曲线的方程为

B.左焦点到一条渐近线距离为

C.直线与曲线有两个公共点;

D.过右焦点截双曲线所得弦长为的直线只有三条;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是矩形,侧面PAD⊥底面ABCDEPA的中点,过CDE三点的平面与PB交于点F,且PA=PD=AB=2.

1)证明:

2)若四棱锥的体积为,则在线段上是否存在点G,使得二面角的余弦值为?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆规是用来画椭圆的一种器械,它的构造如图所示,在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定的滑块AB,它们可分别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一周,则点M的轨迹C是一个椭圆,其中|MA|2|MB|1,如图,以两条导槽的交点为原点O,横槽所在直线为x轴,建立直角坐标系.

1)将以射线Bx为始边,射线BM为终边的角xBM记为φ0≤φ),用表示点M的坐标,并求出C的普通方程;

2)已知过C的左焦点F,且倾斜角为α0≤α)的直线l1C交于DE两点,过点F且垂直于l1的直线l2C交于GH两点.|GH|依次成等差数列时,求直线l2的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点.若直与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若对任意恒成立,求的取值集合;

2)设,点,点,直线的斜率为求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆左、右焦点分别为,离心率为,两准线间距离为8,圆O的直径为,直线l与圆O相切于第四象限点T,与y轴交于M点,与椭圆C交于点NN点在T点上方),且

1)求椭圆C的标准方程;

2)求直线l的方程;

3)求直线l上满足到距离之和为的所有点的坐标.

查看答案和解析>>

同步练习册答案