精英家教网 > 高中数学 > 题目详情

【题目】某鲜奶店每天购进30瓶鲜牛奶,且当天的利润y(单位:元)关于当天需求量n(单位:瓶,n∈N)的函数解析式(n∈N).鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶)绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5):

(1)求这100天的日利润(单位:元)的平均数;

(2)以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.

【答案】(1)平均数:111.95元;(2)0.75.

【解析】

(1)结合柱形图可得日需求量和频数,运用加权平均数计算可得所求值;

(2)由(1)求得当天利润不少于100元的频数,即可得到所求概率.

(1)日利润为120元有60天,85元有5天,92元有10天,

99元有10天,106元有5天,113元有10天,

可得这100天的日利润(单位:元)的平均数为

120×0.6+85×0.05+92×0.1+99×0.1+106×0.05+113×0.1=111.95(元);

(2)由(1)可得120元有60天,106元有5天,113元有10天,

可得当天利润不少于100元的概率为0.75.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,第二年是万元,第三年是万元,,以后逐年递增万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用年的维修费用的和为,年平均费用为.

(1)求出函数的解析式;

(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】024中取一个数字,从135中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是______(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为 (t为参数),直线的参数方程为 (为参数).设的交点为,当变化时,的轨迹为曲线

(1)写出的普通方程;

(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设的交点,求的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产,决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究员甲根据以上数据认为具有线性回归关系,请帮他求出关于的线性回归方程(保留小数点后两位有效数字)

2)研究员乙根据以上数据得出的回归模型:.为了评价两种模型的拟合结果,请完成以下任务:

①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

残差

模型乙

估计值

3.2

2.4

2

1.76

1.4

残差

0

0

0

0.14

0.1

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好;

3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2.若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)

参考公式:

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为过点的直线与抛物线相交于两点,与抛物线的准线相交于点 的面积之比__________

【答案】

【解析】

由题意可得抛物线的焦点的坐标为准线方程为

如图,设A,B分别向抛物线的准线作垂线,垂足分别为E,N

解得

代入抛物线解得

∴直线AB经过点与点

故直线AB的方程为代入抛物线方程解得

答案:

点睛:

在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。抛物线定义有两种用途:一是当已知曲线是抛物线时抛物线上的点M满足定义它到准线的距离为d|MF|d可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义从而得到动点的轨迹是抛物线.

型】填空
束】
17

【题目】已知三个内角所对的边分别是,若.

1)求角

2)若的外接圆半径为2,求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某产品16月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如下表所示:

月份i

1

2

3

4

5

6

单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14

1)根据15月份的数据,求出y关于x的回归直线方程;

2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问所得到的回归直线方程是否理想?

3)预计在今后的销售中,销售量与单价仍然服从(1)中的关系,且该产品的成本是2.5/件,为获得最大利润,该产品的单价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校书店新进了一套精品古典四大名著:《红楼梦》、《三国演义》、《西游记》、《水浒传》共四本书,每本名著数量足够多,今有五名同学去书店买书,由于价格较高,五名同学打算每人只选择一本购买.

(1)求“每本书都有同学买到”的概率;

(2)求“对于每个同学,均存在另一个同学与其购买的书相同”的概率;

3)记X为五位同学购买相同书的个数的最大值,求X的分布列和数学期望EX.

查看答案和解析>>

同步练习册答案