精英家教网 > 高中数学 > 题目详情
18.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△ADP是等腰直角三角形,∠APD是直角,AB⊥AD,AB=1,$AD=2,AC=CD=\sqrt{5}$.
(Ⅰ)求直线PB与平面PCD所成角的正弦值;
(Ⅱ)求平面PCD与平面PAB所成二面角的平面角的余弦值.

分析 (Ⅰ)取AD的中点O,连结OP,OC,则PO⊥AD,从而OC,AD,PO两两垂直,以O为原点,建立空间直角坐标系,利用向量法能求出直线PB与平面PCD所成角的正弦值.
(Ⅱ)求出平面PAB的法向量和平面PAB的一个法向量,利用向量法能求出平面PCD与平面PAB所成二面角的平面角的余弦值.

解答 (本小题满分12分)
解:(Ⅰ)取AD的中点O,连结OP,OC,
∵△ADP是等腰直角三角形,∠APD是直角,∴PO⊥AD.
∵平面PAD⊥平面ABCD,∴PO⊥平面ABCD.
∴PO⊥OA,PO⊥OC,又∵AC=CD,∴OC⊥AD.
即OC,AD,PO两两垂直.(2分)
以O为原点,建立如图所示的空间直角坐标系.
由条件知,$OC=\sqrt{A{C^2}-A{O^2}}=\sqrt{{{\sqrt{5}}^2}-1}=2$,PO=1.
故O,A,B,C,D,P各点的坐标分别为:
O(0,0,0),A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1),
所以,$\overrightarrow{AB}=(1,0,0),\overrightarrow{AP}=(0,-1,1)$,$\overrightarrow{PB}=(1,1,-1)$,$\overrightarrow{DC}=(2,1,0)$,$\overrightarrow{DP}=(0,1,1)$.(4分)
设平面PCD的法向量为n=(x,y,z),则$\left\{\begin{array}{l}n•\overrightarrow{DC}=0\\ n•\overrightarrow{DP}=0\end{array}\right.$,即$\left\{\begin{array}{l}2x+y=0\\ y+z=0\end{array}\right.$
令x=1,则y=-2,z=2,故n=(1,-2,2)是平面PCD的一个法向量.(6分)
设直线PB与平面PCD所成角为θ1
则$sin{θ_1}=|{cos<n,\overrightarrow{PB}>}|=|{\frac{{n•\overrightarrow{PB}}}{{|n|•|{\overrightarrow{PB}}|}}}|=|{\frac{1-2-2}{{\sqrt{9}×\sqrt{3}}}}|=\frac{{\sqrt{3}}}{3}$,
即直线PB与平面PCD所成角的正弦值为$\frac{{\sqrt{3}}}{3}$.(8分)
(Ⅱ)设平面PAB的法向量为m=(x1,y1,z1),则$\left\{\begin{array}{l}m•\overrightarrow{AB}=0\\ m•\overrightarrow{AP}=0\end{array}\right.$,即$\left\{\begin{array}{l}{x_1}=0\\-{y_1}+{z_1}=0\end{array}\right.$.
令y1=1,则z1=1,故m=(0,1,1)是平面PAB的一个法向量.(10分)
设平面PCD与平面PAB所成角的二面角的平面角为θ2
则$cos{θ_2}=\frac{n•m}{|n|•|m|}=\frac{0-2+2}{{\sqrt{9}×\sqrt{2}}}=0$,
所以平面PCD与平面PAB所成二面角的平面角的余弦值0.(12分)

点评 本题考查线面角的正弦值的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为$2\sqrt{3}$,AB=2,AC=1,∠BAC=60°,则此球的表面积等于(  )
A.B.20πC.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在空间直角坐标系中,点(-2,1,5)关于x轴的对称点的坐标为(  )
A.(-2,1,-5)B.(-2,-1,-5)C.(2,-1,5)D.(2,1,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是(  )
A.平行B.相交成60°C.相交且垂直D.异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某四面体的三视图如图所示,则此四面体的四个面中面积最大的面的面积等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=sin(ωx+φ),x∈R(其中ω>0,-π<φ<π)的部分图象,如图所示.那么f(x)的解析式为(  )
A.$f(x)=sin(x+\frac{π}{2})$B.$f(x)=sin(x-\frac{π}{2})$C.$f(x)=sin(2x+\frac{π}{2})$D.$f(x)=sin(2x-\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=(  )
A.{x|1<x<3}B.{x|1<x<4}C.{x|2<x<3}D.{x|2<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线l1:x-y+1=0和l2:x-y+3=0,则l1与l2之间距离是(  )
A.$2\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xoy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{2}cost\\ y=-1+\sqrt{2}sint\end{array}\right.$,(t为参数),在以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρcos({θ+\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,A,B两点的极坐标为$({1,\frac{π}{2}}),({1,π})$.
(1)求圆C的普通方程和直线L的直角坐标方程;
(2)点P是圆C上任意一点,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案