A. | (-∞,$\frac{2}{e}$] | B. | (-∞,$\frac{2}{e}$) | C. | (-∞,0] | D. | (-∞,0) |
分析 由题意,不等式f(x)<g(x)在[1,e]上有解,即 $\frac{m}{2}$<$\frac{lnx}{x}$在[1,e]上有解,令h(x)=$\frac{lnx}{x}$,则h′(x)=$\frac{1-lnx}{{x}^{2}}$,然后求出h(x)的最大值,利用$\frac{m}{2}$<h(x)max能求出m的取值范围.
解答 解:由题意,不等式f(x)<g(x)在[1,e]上有解,
∴mx<2lnx,即$\frac{m}{2}$<$\frac{lnx}{x}$在[1,e]上有解,
令h(x)=$\frac{lnx}{x}$,则h′(x)=$\frac{1-lnx}{{x}^{2}}$,
∵1≤x≤e,∴h′(x)≥0,
∴h(x)max=h(e)=$\frac{1}{e}$,
∴$\frac{m}{2}$<h(e)=$\frac{1}{e}$,
∴m<$\frac{2}{e}$.
∴m的取值范围是(-∞,$\frac{2}{e}$).
故选:B.
点评 本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{13}$ | B. | -$\frac{5}{13}$ | C. | $\frac{2\sqrt{13}}{13}$ | D. | -$\frac{2\sqrt{13}}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com