(08年长郡中学一模理)(12分)已知在多面体ABCDE中,AB⊥平面ACD,DE∥AB,AC = AD = CD = DE = 2,
F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求平面ABC和平面CDE所成的小于90°的二面角的大小;
(Ⅲ)求点A到平面BCD的距离的取值范围.
解析:(Ⅰ)证明:∵AB⊥平面ACD,AB∥DE,∴DE⊥平面ACD,∵AF平面ACD,
∴DE⊥AF.又∵AC=AD=CD,F为CD中点,∴AF⊥CD.
∵DEÌ平面CDE,CDÌ平面CDE,CD∩DE=D,∴AF⊥平面CDE.
(Ⅱ)解法一:∵AB∥DE,AB(/平面CDE,DEÌ平面CDE,∴AB∥平面CDE,设平面ABC∩平面CDE=l,则l∥AB.即平面ABC与平面CDE所成的二面角的棱为直线l.
∵AB^平面ADC,∴l^平面ADC.∴l^AC,l^DC.∴ÐACD为平面ABC与平面CDE所成二面角的平面角.∵AC=AD=CD,∴ÐACD=60°,∴平面ABC和平面CDE所成的小于90°的二面角的大小为60°.
(Ⅱ)解法二:如图,以F为原点,过F平行于DE的直线为x轴,FC,FA所在直线为y轴,z轴建立空间直角坐标系.∵AC=2,∴A(0,0,),设AB=x,B(x,0,),C(0,1,0)
((AB=(x,0,0),((AC=(0,1,-),设平面ABC的一个法向量为n=(a,b,c),
则由((AB×n=0,((AC×n=0,得a=0,b=c,不妨取c=1,则n=(0,,1).
∵AF^平面CDE,∴平面CDE的一个法向量为((FA=(0,0,).
cos<n,((FA>= eq \o(\s\up8(((FA=,<n,((FA>=60°.
∴平面ABC与平面CDE所成的小于90°的二面角的大小为60°.
科目:高中数学 来源: 题型:
(08年长郡中学一模理)(12分) 在北京友好运动会中,甲、乙、丙三名选手进行单循环赛(即每两人比赛一场),共赛三场,每场比赛胜者得1分,输者得0分,没有平局;在每一场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.
(Ⅰ)求甲获得小组第一且丙获得小组第二的概率;
(Ⅱ)求三人得分相同的概率;
(Ⅲ)设在该小组比赛中甲得分数为,求Eξ.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学一模理)(13分)某中学有教职员工500人,为了开展迎2008奥运全民健身活动,增强教职员工体质,学校工会鼓励大家积极参加晨练与晚练,每天清晨与晚上定时开放运动场、健身房和乒乓球室,约有30%的教职员工坚持每天锻炼. 据调查统计,每次去户外锻炼的人有10%下次去室内锻炼,而在室内锻炼的人有20%下次去户外锻炼. 请问,随着时间的推移,去户外锻炼的人数能否趋于稳定?稳定在多少人左右?
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学一模文)(12分)如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在面的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(Ⅰ)求证:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求点P到平面QBD的距离;
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年长郡中学一模文)(13分)已知函数,
①若在区间上单调递减,求实数的取值范围。
②若过点可作函数图象的三条切线,求实数的取值范围。
③设点,,记点,求证:在区间内至少有一实数,使得函数图象在处的切线平行于直线。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com