精英家教网 > 高中数学 > 题目详情

若把1+(1+x)+(1+x)2+…+(1+x)n展开成关于x的多项式,其各项系数和为an(n∈N*),则an=________.

2n+1-1
分析:利用赋值法,通过x=1直接求出展开式各项系数和为an的值.
解答:当x=1时,1+(1+x)+(1+x)2+…+(1+x)n展开成关于x的多项式,其各项系数和为an=1+2+22+23+…+2n==2n+1-1.
故答案为:2n+1-1.
点评:本题考查二项式定理的应用,赋值法以及数列求和的基本方法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若把函数y=f(x)的图象沿x轴向左平移
π
4
个单位,沿y轴向下平移1个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数y=sinx的图象,则y=f(x)的解析式为(  )
A、y=sin(2x-
π
4
)+1
B、y=sin(2x-
π
2
)+1
C、y=sin(
1
2
x+
π
4
)-1
D、y=sin(
1
2
x+
π
2
)-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)若把1+(1+x)+(1+x)2+…+(1+x)n展开成关于x的多项式,其各项系数和为an(n∈N*),则an=
2n+1-1
2n+1-1

查看答案和解析>>

科目:高中数学 来源:贵溪市模拟 题型:单选题

若把函数y=f(x)的图象沿x轴向左平移
π
4
个单位,沿y轴向下平移1个单位,然后再把图象上每个点的 横坐标伸长到原来的2倍(纵坐标保持不变),得到函数y=sinx的图象,则y=f(x)的解析式为(  )
A.y=sin(2x-
π
4
)+1
B.y=sin(2x-
π
2
)+1
C.y=sin(
1
2
x+
π
4
)-1
D.y=sin(
1
2
x+
π
2
)-1

查看答案和解析>>

科目:高中数学 来源:2012年上海市静安、杨浦、青浦、宝山区高考数学二模试卷(文科)(解析版) 题型:解答题

若把1+(1+x)+(1+x)2+…+(1+x)n展开成关于x的多项式,其各项系数和为an(n∈N*),则an=   

查看答案和解析>>

同步练习册答案