精英家教网 > 高中数学 > 题目详情

【题目】某校高三年级50名学生参加数学竞赛,根据他们的成绩绘制了如图所示的频率分布直方图,已知分数在的矩形面积为

求:分数在的学生人数;

这50名学生成绩的中位数精确到

若分数高于60分就能进入复赛,从不能进入复赛的学生中随机抽取两名,求两人来自不同组的概率.

【答案】(1)3人; (2)76.7; (3).

【解析】

1)由所有的矩形面积和为1可得:分数在[5060)的频率为0.06,即可求出;

2)由0.040+0.06+0.20.3,故中位数落在第四组,则中位数为7010

3)分数在[4050)的有2人,记为ab,在[5060)共有3人,记为cde,由此利用列举法能求出从分数[4060)的5名学生任选2人,两人来自不同组的概率.

由所有的矩形面积和为1可得:分数在的频率为,故分数在的人数是人,

故中位数落在第四组,

则中位数为

分数在的有2人,记为a,b,在共有3人,记为c,d,e,

从分数在的5名学生任选2人的方法有:ab、ac、ad、ae、bc、bd、be、cd、ce、de,共10种,

两人来自不同组的有ac、ad、ae、bc、bd、be共6种,

两人来自不同组的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆外切并且与圆内切,圆心轨迹为曲线

(1)求曲线的方程;

(2)若是曲线上关于轴对称的两点,点,直线交曲线

于另一点,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求异面直线A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱柱中,底面是梯形,,侧面为菱形,.

(Ⅰ)求证:

(Ⅱ)若,直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.

(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;(精确到0.01)

(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)设函数,试讨论函数的单调性;

(Ⅱ)设函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数fx)=Asinωx+φ)(ω0|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

2π

x

Asinωx+φ

0

5

5

0

1)请将上表数据补充完整,并直接写出函数fx)的解析式;

2)将yfx)图象上所有点向左平移θθ0)个单位长度,得到ygx)的图象.ygx)图象的一个对称中心为(0),求θ的最小值.

3)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, , .将沿折起至,使得平面平面(如图2), 为线段上一点.

图1 图2

(Ⅰ)求证:

(Ⅱ)若为线段中点,求多面体与多面体的体积之比;

(Ⅲ)是否存在一点,使得平面?若存在,求的长.若不存在,请说明理由.

查看答案和解析>>

同步练习册答案