精英家教网 > 高中数学 > 题目详情

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系.求y关于x的线性回归方程,并预测M公司2017年4月份的市场占有率;

(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的AB两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:


报废年限

车型

1年

2年

3年

4年

总计

A

20

35

35

10

100

B

10

30

40

20

100

经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

参考数据: .

参考公式:

回归直线方程为其中

【答案】(Ⅰ),;(Ⅱ) .

【解析】试题分析:

()由回归方程的公式可得,据此预测可得M公司2017年4月份的市场占有率为

()结合题意,以利润的期望值为决策依据,得到每辆款车的利润数学期望为元;每辆B款车的利润数学期望为元;∵,∴应该采购款车.

试题解析:

(Ⅰ)由题意,

时, ,即预测公司2017年4月份(即时)的市场占有率为

(Ⅱ)由频率估计概率,每辆款车可使用1年,2年,3年、4年的概率分别为

∴每辆款车的利润数学期望为元;每辆款车可使用1年,2年,3年、4年的概率分别为,∴每辆B款车的利润数学期望为元;∵,∴应该采购款车.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若二次函数满足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[﹣1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高二年级学生对教师教学的意见,打算从高二年级883名学生中抽取80名进行座谈,若采用下面的方法选取:先用简单随机抽样从883人中剔除3人,剩下880人再按系统抽样的方法进行,则每人入选的概率是(
A.
B.
C.
D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断f(x)的奇偶性;
(2)判断f(x)的单调性,并用定义证明;
(3)解不等式f(f(x))+f( )<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知焦点在x轴上的椭圆 =1(b>0)有一个内含圆x2+y2= ,该圆的垂直于x轴的切线交椭圆于点M,N,且 (O为原点).

(1)求b的值;
(2)设内含圆的任意切线l交椭圆于点A、B.求证: ,并求| |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+4x+a,x∈[0,1],若f(x)有最小值﹣2,则f(x)的最大值为(
A.1
B.0
C.﹣1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,x∈[2,5].
(1)判断函数f(x)的单调性,并用定义证明你的结论;
(2)求不等式f(m+1)<f(2m﹣1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣mx+m2﹣19=0},B={x|x2﹣5x+6=0},C={2,﹣4},若A∩B≠,A∩C=,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的方程x2+px﹣12=0和x2+qx+r=0的解集分别是A,B,且A≠B.A∪B={﹣3,2,4},A∩B={﹣3}.求p,q,r的值.

查看答案和解析>>

同步练习册答案