分析 由题意画出图象,并求出AB、BC、AC的长,由余弦定理求出cosB,由平方关系求出sinB的值,代入三角形的面积公式求出该沙田的面积.
解答 解:由题意画出图象:
且AB=13里,BC=14里,AC=15里,
在△ABC中,由余弦定理得,
cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{1{3}^{2}+1{4}^{2}-1{5}^{2}}{2×13×14}$=$\frac{5}{13}$,
所以sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{12}{13}$,
则该沙田的面积:即△ABC的面积S=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{2}×13×14×\frac{12}{13}$=84.
故答案为:84.
点评 本题考查了余弦定理,以及三角形面积公式的实际应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com