精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

【答案】
(1)解:曲线C的极坐标方程是 2sin2θ=1,把x=ρcosθ,y=ρsinθ代入可得: =1
(2)解:直线l的参数方程是 (t为参数),即 ,代入椭圆方程可得: ﹣2=0,

∴t1+t2= ,t1t2=﹣ ,∴|AB|=|t1﹣t2|= = =


【解析】(1)曲线C的极坐标方程是 2sin2θ=1,把x=ρcosθ,y=ρsinθ代入可得直角坐标方程..(2)直线l的参数方程是 (t为参数),即 ,代入椭圆方程可得: ﹣2=0,利用|AB|=|t1﹣t2|= 即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】根据要求求值:
(1)用辗转相除法求123和48的最大公约数.
(2)用更相减损术求80和36的最大公约数.
(3)把89化为二进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1= ,an+1= (n∈N*).
(Ⅰ)求证:数列{ }是等差数列,并求{an}的通项公式;
(Ⅱ)设bn+an=l(n∈N*),Sn=b1b2+b2b3+…+bnbn+1 , 试比较an与8Sn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有三张卡片分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3每次抽取1将抽取的卡片上的数字依次记为abc.求:

(1)“抽取的卡片上的数字满足abc”的概率;

(2)“抽取的卡片上的数字abc不完全相同”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,.

(1).求图中的值; 并根据频率分布直方图,估计这100名学生语文成绩的平均分;

(2).若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如上右表所示,求数学成绩在之外的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 在椭圆C: 上,F为右焦点,PF⊥垂直于x轴,A,B,C,D为椭圆上的四个动点,且AC,BD交于原点O.
(1)求椭圆C的方程;
(2)判断直线l: 与椭圆的位置关系;
(3)设A(x1 , y1),B(x2 , y2)满足 = ,判断kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(60分及以上为及格).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设.

①若,曲线处的切线过点,求的值;

②若,求在区间上的最大值.

(2)设 两处取得极值,求证: 不同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲,乙两种产品均需用两种原料,已知生产1吨每种产品需用原料及每天原料的可用限额如下表所示,如果生产1吨甲,乙产品可获利润分别为3万元、4万元,则该企业可获得最大利润为__________万元.

原料限额

A(吨)

3

2

12

B(吨)

1

2

8

查看答案和解析>>

同步练习册答案