精英家教网 > 高中数学 > 题目详情
已知函数f(x)=λ•2x-4x的定义域为[0,1].
(1)若函数f(x)在[0,1]上是单调递减函数,求实数λ的取值范围;
(2)若函数f(x)的最大值为
12
,求实数λ的值.
分析:(1)设2x=t,原题转化为y=-t2+λt在[1.2]是减函数,由此能求出实数λ的取值范围.
(2)设2x=t,原题转化为y=-t2+λt=-(t-
λ
2
2+
λ2
4
,t∈[1.2]最大值为
1
2
,求实数λ的值.对λ分类讨论,求出在区间[1,2]上的最大值,使其等于
1
2
,解出λ即可.
解答:解:(1)设2x=t,
∵函数f(x)=λ•2x-4x=-(2x2+λ•2x定义域为[0,1],
∴2x∈[1,2],y=-t2+λt,t∈[1.2],
∵函数f(x)在[0,1]上是单调递减函数,
∴y=-t2+λt在[1.2]是减函数,
∴t=
λ
2
≤1,解得λ≤2,
∴实数λ的取值范围是(-∞,2].
(2)∵函数f(x)=λ•2x-4x的定义域为[0,1],最大值为
1
2

由(1)知,y=-t2+λt=-(t-
λ
2
2+
λ2
4
,t∈[1.2],
∴对称轴方程为t=
λ
2

①当
λ
2
1时,y=-(t-
λ
2
2+
λ2
4
在[1.2]是减函数,
∴当t=1时,y取最大值ymax=-(1-
λ
2
)2+
λ2
4
=
1
2
,解得λ=
3
2

②当1
λ
2
2时,当t=
λ
2
时,y取最大值ymax=-(
λ
2
-
λ
2
2+
λ2
4
=
1
2
,解得λ=±
2
,(舍)
③当
λ
2
>2
时,当t=2时,y取最大值ymax=-(2-
λ
2
2+
λ2
4
=
1
2
,解得λ=
9
4

综上所述,实数λ的值为
3
2
,或
9
4
点评:本题考查二次函数的单调性及二次函数在给定区间上的最值问题,考查分类讨论思想,解题时要注意换元法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案