精英家教网 > 高中数学 > 题目详情
16.变量 x、y满足线性约束条件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥x-1}\end{array}\right.$,则目标函数z=(k+1)x-y,仅在点(0,2)取得最小值,则k的取值范围是(  )
A.k<-4B.-4<k<0>C.-2<k<0D.k>0

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,结合目标函数z=(k+1)x-y仅在点(0,2)取得最小值列式求得k值.

解答 解:由约束条件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥x-1}\end{array}\right.$作出可行域如图,

∵目标函数z=(k+1)x-y,仅在点(0,2)取得最小值,
∴-3<k+1<1,即-4<k<0.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的右焦点坐标为(  )
A.(5,0)B.(0,5)C.($\sqrt{7}$,0)D.(0,$\sqrt{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△ABC的内切圆I与边AB、AC分别切于点D、E,O为△BCI的外心.证明:∠ODB=∠OEC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)的定义域为A,若x1,x2∈A且x1≠x2时.总有f(x1)≠f(x2),则称f(x)为“唯一函数”.例如,函数f(x)=3x-2(x∈R)是“唯一函数”.下列说法中正确的是(  )
①函数f(x)=x2+1(x∈R)是“唯一函数”;
②若f(x)为“唯-函数”,x1,x2∈A且f(x1)=f(x2).则x1=x2
③在定义城上单调的函数一定是“唯一函数”;
④若f(x)为“唯一函数”,则函数f(x)在定义域上是单调函数.
A.②③④B.②③C.②④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,实数m的最大值为k
(1)求实数k;
(2)若a,b,c∈R+,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=\frac{k}{20}$,求z=a+2b+3c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.圆柱的轴截面为边长为a的正方形,则此圆柱的全面积为$\frac{3π}{2}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)的定义域为(0,+∞),并且满足三个条件:①对任意的x,y∈R+,都有f(x+y)=f(x)f(y);②对任意的x∈R+,都有0<f(x)<1;③f(2)=$\frac{1}{4}$.
(Ⅰ)求f(1),f(3)的值;
(Ⅱ)证明:函数f(x)为区间(0,+∞)上的减函数;
(Ⅲ)解不等式:f(2x)<$\frac{1}{32}$f(-x2+6x-8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对任意非零实数a,b,定义a?b的算法原理如程序框图所示.设a为函数y=x2-2x+3(x∈R)的最小值,b为抛物线y2=8x的焦点到准线的距离,则计算机执行该运算后输出结果是(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{7}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义:若对定义域D内的任意两个x1,x2(x1≠x2),均有|f(x1)-f(x2)|<|x1-x2|成立,则称函数y=f(x)是D上的“平缓函数”.则以下说法正确的有(  )
①f(x)=-lnx+x为(0,+∞)上的“平缓函数”
②g(x)=sinx为R上的“平缓函数”
③h(x)=x2-x是为R上的“平缓函数”
④已知函数y=k(x)为R上的“平缓函数”,若数列{an}对?n∈N*总有|xn+1-xn|≤$\frac{1}{(2n+1)^{2}}$,则k(xn+1)-k(x1)<$\frac{1}{4}$.
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案