【题目】如图,在五棱锥中,平面,,
(1)证明: ;
(2)过点作平行于平面的截面,与直线分别交于点,求夹在该截面与平面之间的几何体体积.
【答案】(1)证明见解析;(2).
【解析】
(1)由题意平面,可得,在中由余弦定理可得,可得,可得,故平面,故;
(2),分别求出与代入可得答案.
(1)由题意:平面,可得
在中,,由余弦定理可得:
,,
易得:,为直角三角形,,
又由,平面,平面,
可得平面,故;
(2)由题意可得平面平面,又平面平面,平面平面,故可得,又,可得四边形为平行四边形,可得,,故为的中点,
同理由平面平面,又平面平面,平面平面,故可得,且G点为PB的中点,
易得,且平面,且平面,故可得平面,由平面,且平面平面,故可得:,
在中,,G点为PB的中点,可得为的中位线,,
连接BE交DF与O点,易得,在中,且,
由平面,可得平面,可得,
故,易得平面,且平面平面,
故P点到平面的距离即为的长为2,
可得:
科目:高中数学 来源: 题型:
【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:
试销价格(元) | ||||||
产品销量 (件) |
已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,前n项和为,且.
(1)求;
(2)证明数列为等差数列,并写出其通项公式;
(3)设,试问是否存在正整数p,q(其中),使成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.
(1)若,求的前项和;
(2)证明:的“极差数列”仍是;
(3)求证:若数列是等差数列,则数列也是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,,点G的轨迹为曲线C.
(1)求曲线C的方程;
(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.
(1)若甲公司计划从这10次竞价中随机抽取3次竞价进行调研,其中每小时点击次数超过7次的竞价抽取次数记为,求的分布列与数学期望;
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为,则点近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线.(附:回归方程系数公式:).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数的定义域为,如果存在区间,同时满足下列条件:
①在上是单调函数;
②当的定义域为时,值域也是,则称区间是函数的“区间”.对于函数.
(1)若,求函数在处的切线方程;
(2)若函数在上存在“区间”,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com