精英家教网 > 高中数学 > 题目详情

【题目】如图,在五棱锥中,平面,,

1)证明:

2)过点作平行于平面的截面,与直线分别交于点,求夹在该截面与平面之间的几何体体积.

【答案】(1)证明见解析;(2).

【解析】

1)由题意平面,可得,在中由余弦定理可得,可得,可得,故平面,

2,分别求出代入可得答案.

1)由题意:平面,可得

中,,由余弦定理可得:

易得:为直角三角形,

又由,平面,平面,

可得平面,

2)由题意可得平面平面,又平面平面,平面平面,故可得,,可得四边形为平行四边形,可得,,的中点,

同理由平面平面,又平面平面,平面平面,故可得,G点为PB的中点,

易得,平面,且平面,故可得平面,由平面,且平面平面,故可得:,

中,G点为PB的中点,可得的中位线,,

连接BEDFO点,易得,中,

平面,可得平面,可得,

,易得平面,且平面平面

P点到平面的距离即为的长为2

可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:

试销价格(元)

产品销量 (件)

已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.

1)试判断谁的计算结果正确?

2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,前n项和为,且.

1)求

2)证明数列为等差数列,并写出其通项公式;

3)设,试问是否存在正整数pq(其中),使成等比数列?若存在,求出所有满足条件的数组(pq);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记无穷数列的前项中最大值为,最小值为,令,则称“极差数列”.

1)若,求的前项和;

2)证明:的“极差数列”仍是

3)求证:若数列是等差数列,则数列也是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是增函数,求实数的取值范围;

(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程

(2)过点作直线的垂线交曲线两点(轴上方),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M及定点,点A是圆M上的动点,点B上,点G上,且满足,点G的轨迹为曲线C.

1)求曲线C的方程;

2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线分别交于PQ两点.时,求O为坐标原点)面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.

1)若甲公司计划从这10次竞价中随机抽取3次竞价进行调研,其中每小时点击次数超过7次的竞价抽取次数记为,求的分布列与数学期望;

2)若把乙公司设置的每次点击价格为x,每小时点击次数为,则点近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线.(附:回归方程系数公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数的定义域为,如果存在区间,同时满足下列条件:

上是单调函数;

②当的定义域为时,值域也是,则称区间是函数的“区间”.对于函数.

1)若,求函数处的切线方程;

2)若函数上存在“区间”,求的取值范围.

查看答案和解析>>

同步练习册答案