【题目】设函数.
(1)当时,求证函数在上是增函数.
(2)若函数在上有两个不同的零点,求的取值范围.
科目:高中数学 来源: 题型:
【题目】某公司租赁甲、乙两种设备生产、两类产品,甲种设备每天能生产类产品件和类产品件,乙种设备每天能生产类产品件和类产品件.已知设备甲每天的租赁费为元,设备乙每天的租赁费为元,现该公司至少要生产类产品件,类产品件,求所需租赁费最少为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(),以椭圆内一点为中点作弦,设线段的中垂线与椭圆相交于, 两点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)试判断是否存在这样的,使得, , , 在同一个圆上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系xOy中,点A坐标为(2,0),点B坐标为(4,3),点C坐标为(1,3),且(t∈R).
(1) 若CM⊥AB,求t的值;
(2) 当0≤ t ≤1时,求直线CM的斜率k和倾斜角θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量与向量的对应关系用表示.
(1) 证明:对于任意向量、及常数m、n,恒有;
(2) 证明:对于任意向量,;
(3) 证明:对于任意向量、,若,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点.
(Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;
(Ⅱ)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形中,,,、分别为边、的中点,沿将折起,点折至处(与不重合),若、分别为线段、的中点,则在折起过程中( )
A.可以与垂直
B.不能同时做到平面且平面
C.当时,平面
D.直线、与平面所成角分别为、,、能够同时取得最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,PA⊥平面ABCD,四边形ABCD是矩形,,,点F为PB中点,点E在边BC上移动.
(Ⅰ)求证:PD∥平面AFC;
(Ⅱ)若,求证:;
(Ⅲ)若二面角的大小为60°,则CE为何值时,三棱锥的体积为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com