【题目】函数f(x)=ln ,则f(x)是( )
A.奇函数,且在(0,+∞)上单调递减
B.奇函数,且在(0,+∞)上单凋递增
C.偶函数,且在(0,+∞)上单调递减
D.偶函数,且在(0,+∞)上单凋递增
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+(y﹣1)2=9,直线l:x﹣my+m﹣2=0,且直线l与圆C相交于A、B两点. (Ⅰ)若|AB|=4 ,求直线l的倾斜角;
(Ⅱ)若点P(2,1)满足 = ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|2a﹣x|+2x,a∈R.
(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;
(2)若函数f(x)在R上是增函数,求实数a的取值范围;
(3)若存在实数a∈[﹣2,2],使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,M,E,F,N分别为A1B1 , B1C1 , C1D1 , D1A1的中点,求证:
(1)E,F,D,B四点共面;
(2)面AMN∥平面EFDB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆C:x2+(y﹣3)2=4,定直线m;x+3y+6=0,过A(﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,
(1)当l与m垂直时,求出N点的坐标,并证明:l过圆心C;
(2)当|PQ|=2 时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )
A.有无数条
B.有2条
C.有1条
D.不存在
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.
(Ⅰ)求证:l∥平面ABCD;
(Ⅱ)求证:PB⊥BC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)满足对任意的两个不相等的正数x1 , x2 , 下列三个式子:f(x1﹣x2)+f(x2﹣x1)=0,(x1﹣x2)(f(x1)﹣f(x2))<0,f( )> 都恒成立,则f(x)可能是( )
A.f(x)=
B.f(x)=﹣x2
C.f(x)=﹣tanx
D.f(x)=|sinx|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+6﹣2m=0(m∈R).
(1)求该方程表示一条直线的条件;
(2)当m为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(3)已知方程表示的直线l在x轴上的截距为﹣3,求实数m的值;
(4)若方程表示的直线l的倾斜角是45°,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com