【题目】已知圆心在直线y=4x上,且与直线l:x+y﹣2=0相切于点P(1,1)
(Ⅰ)求圆的方程
(II)直线kx﹣y+3=0与该圆相交于A、B两点,若点M在圆上,且有向量 (O为坐标原点),求实数k.
【答案】解:(Ⅰ)设圆的方程为(x﹣a)2+(y﹣4a)2=r2
因为直线相切,圆心到直线的距离d= ,
且圆心与切点连线与直线l垂直
则: 可得a=0,r= ,
所以圆的方程为:x2+y2=2.
(II)直线与圆联立: ,
得:(1+k2)x2+6kx+7=0,
△=8k2﹣28>0,解得.k 或k ,
设A(x1,y1),B(x2,y2),
则: , ,
,
将M代入圆方程:(x +x2)2+(y1+y2)2=2,
,
求得k=
【解析】(Ⅰ)根据直线与圆相切的位置关系d= r 以及直线垂直斜率之积等于-1可求出a=0,r= ,进而得到圆的方程。
(II)由题意该直线与圆相交于A、B两点联立直线与圆的方程可得△>0求出k的取值范围;再根据韦达定理得出与的表达式,代入圆的方程正理即得k的值,根据k的取值范围两个值全要。
科目:高中数学 来源: 题型:
【题目】为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用t(t≥0)万元满足x=4﹣ (k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数k,并将该厂家2016年该产品的利润y万元表示为年促销费用t万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,O为坐标原点,椭圆C1: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为e1;双曲线C2: ﹣ =1的左、右焦点分别为F3 , F4 , 离心率为e2 , 已知e1e2= ,且|F2F4|= ﹣1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一名大学生尝试开家“网店”销售一种学习用品,经测算每售出1盒该产品可获利30元,未售出的商品每盒亏损10元.根据统计资料,得到该商品的月需求量的频率分布直方图如图所示,该同学为此购进180盒该产品,以x(单位:盒,100≤x≤200)表示一个月内的市场需求量,y(单位:元)表示一个月内经销该产品的利润.
(1)根据直方图估计这个月内市场需求量x的平均数;
(2)将y表示为x的函数;
(3)根据直方图估计这个月利润不少于3 800元的概率(用频率近似概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某创业投资公司拟开发某种新能源产品,估计能获得万元到万元的投资利益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过收益的.
()请分析函数是否符合公司要求的奖励函数模型,并说明原因.
()若该公司采用函数模型作为奖励函数模型,试确定最小正整数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com