精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.

(1)求椭圆的方程;

(2)动直线 )交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1);(2)在坐标平面上存在一个定点满足条件.

【解析】试题分析:

(1)由题设知a= ,所以 ,椭圆经过点P(1, ),代入可得b=1,a=,由此可知所求椭圆方程

(2)首先求出动直线过(0,﹣)点.当lx轴平行时,以AB为直径的圆的方程:x2+(y+2=;当ly轴平行时,以AB为直径的圆的方程:x2+y2=1.由.由此入手可求出点T的坐标.

解:

(1)∵椭圆 )的两焦点与短轴的一个端点的连线构成等腰直角三角形,

又∵椭圆经过点,代入可得.

,故所求椭圆方程为.

(2)首先求出动直线过点.

轴平行时,以为直径的圆的方程:

轴平行时,以为直径的圆的方程:

解得

即两圆相切于点,因此,所求的点如果存在,只能是,事实上,点就是所求的点.

证明如下:

当直线垂直于轴时,以为直径的圆过点

当直线不垂直于轴,可设直线

消去得:

记点,则

又因为

所以

所以,即以为直径的圆恒过点

所以在坐标平面上存在一个定点满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A=[2,log2t],集合B={x|y= },
(1)对于区间[a,b],定义此区间的“长度”为b﹣a,若A的区间“长度”为3,试求实数t的值.
(2)若AB,试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满12分) 已知集合在平面直角坐标系中,点M的坐标为(x,y) ,其中

1)求点M不在x轴上的概率;

2)求点M正好落在区域上的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:

甲厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

12

63

86

182

92

61

4

乙厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

29

71

85

159

76

62

18

(1)试分别估计两个分厂生产的零件的优质品率;

(2)由以上统计数据填下面列联表,并问是否有的把握认为“两个分厂生产的零件的质量有差异”.

甲 厂

乙 厂

合计

优质品

非优质品

合计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)满足f′(x1)= ,f′(x2 ,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上“双中值函数”,则实数a的取值范围是(
A.(
B.(0,1)
C.( ,1)
D.( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥S﹣ABCD中,底面ABCD是菱形,且∠BCD=60°,侧面SAB是正三角形,且面SAB⊥面ABCD,F为SD的中点.

(1)证明:SB∥面ACF;
(2)求面SBC与面SAD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)过点A(﹣ ),离心率为 ,点F1 , F2分别为其左右焦点.
(1)求椭圆C的标准方程;
(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出三种函数模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根据它们增长的快慢,则一定存在正实数x0 , 当xx0时,就有(
A.f(x)>g(x)>h(x
B.h(x)>g(x)>f(x
C.f(x)>h(x)>g(x
D.g(x)>f(x)>h(x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若(2x+ 100=a0+a1x+a2x2+…+a100x100 , 则(a0+a2+a4+…+a1002﹣(a1+a3+a5+…+a992的值为(
A.1
B.﹣1
C.0
D.2

查看答案和解析>>

同步练习册答案