(本小题满分13分)
如图,正三棱柱中,D是BC的中点,
(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)求三棱锥的体积.
(Ⅰ)证明:由ABC—A1B1C1是正三棱柱,得出BB1⊥平面ABC,在正△ABC中,得到AD⊥BD,根据三垂线定理得,AD⊥B1D。
(Ⅱ)解:连接A1B,设A1B∩AB1 = E,连接DE.由四边形A1ABB1是正方形,
确定DE∥A1C.推出A1C∥平面AB1D.
(Ⅲ)。
【解析】
试题分析:(Ⅰ)证明:∵ABC—A1B1C1是正三棱柱,
∴BB1⊥平面ABC,
∴BD是B1D在平面ABC上的射影
在正△ABC中,∵D是BC的中点,
∴AD⊥BD,
根据三垂线定理得,AD⊥B1D
(Ⅱ)解:连接A1B,设A1B∩AB1 = E,连接DE.
∵AA1=AB ∴四边形A1ABB1是正方形,
∴E是A1B的中点,
又D是BC的中点,
∴DE∥A1C. ………………………… 7分
∵DE平面AB1D,A1C平面AB1D,
∴A1C∥平面AB1D. ……………………9分
(Ⅲ) ……13分
考点:本题主要考查立体几何中的平行关系、垂直关系、体积计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,(3)小题,体积计算应用了等积法,实现了化难为易。
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com