精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设

)若,求方程在区间内的解集.

)若函数满足:图象关于点对称,在处取得最小值,试确定应满足的与之等价的条件.

【答案】(1)解集为;(2)见解析.

【解析】分析:()由平面向量数量积公式、结合辅助角公式可得,令,从而可得结果;()“图象关于点对称,且在取得最小值”.因此,根据三角函数的图象特征可以知道,,故有

,当且仅当时,的图象关于点对称;此时,对讨论两种情况可得使得函数满足“图象关于点对称,且在取得最小值的充要条件”是“时,;或当时,”.

详解:()根据题意

时,

则有

又因为,故内的解集为

)解:因为,设周期

因为函数须满足“图象关于点对称,且在取得最小值”.

因此,根据三角函数的图象特征可以知道,

故有

又因为,形如的函数的图象的对称中心都是的零点,

故需满足,而当时,

因为

所以当且仅当时,

的图象关于点对称;

此时,

(i)当时,,进一步要使取得最小值,

则有

,故

,则有

因此,由可得

(ii)当时,,进一步要使取得最小值,

则有

,则有

因此,由,可得

综上,使得函数满足“图象关于点对称,且在取得最小值的充要条件”是“时,;或当时,”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆,经过原点的两直线满足,且交圆于不同两点交 于不同两点,记的斜率为

(1)求的取值范围;

(2)若四边形为梯形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水产养殖基地要将一批海鲜用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由水产养殖基地承担.若水产养殖基地恰能在约定日期(×月×日)将海鲜送达,则销售商一次性支付给水产养殖基地万元;若在约定日期前送到,每提前一天销售商将多支付给水产养殖基地万元;若在约定日期后送到,每迟到一天销售商将少支付给水产养殖基地万元.为保证海鲜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送海鲜,已知下表内的信息:

统计信息

汽车

行驶路线

不堵车的情况下到达城市乙所需时间(天)

堵车的情况下到达城市乙所需时间(天)

堵车的概率

运费(万元)

公路

公路

(注:毛利润销售商支付给水产养殖基地的费用运费)

)记汽车走公路时水产养殖基地获得的毛利润为(单位:万元),求的分布列和数学期望

(Ⅱ)假设你是水产养殖基地的决策者,你选择哪条公路运送海鲜有可能让水产养殖基地获得的毛利润更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,已知是正三角形, 平面的中点, 在棱上,且.

(1)求三棱锥的体积;

(2)求证: 平面;

(3)若中点, 在棱上,且,求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且为偶函数,对于函数有下列几种描述:

是周期函数; 是它的一条对称轴;

是它图象的一个对称中心; 时,它一定取最大值;

其中描述正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数,的图象与的图象关于直线对称,且当时,

)求的解析式.

)若上为增函数,求的取值范围.

)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cos,直线l的参数方程为 (t为参数),直线l与圆C交于AB两点,P是圆C上不同于AB的任意一点.

(1)求圆心的极坐标;

(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,数列项和为.

(1)若数列是首项为正数,公比为的等比数列.

①求证:数列为等比数列;

②若对任意恒成立,求的值;

(2)已知为递增数列,即.若对任意,数列中都存在一项使得,求证:数列为等差数列.

查看答案和解析>>

同步练习册答案