精英家教网 > 高中数学 > 题目详情
11.一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )m3
A.6+πB.4+πC.3+πD.2+π

分析 已知中的三视图可得该几何体是一个长方体和圆锥的组合体,分别计算体积,相加可得答案.

解答 解:已知中的三视图可得该几何体是一个长方体和圆锥的组合体,
长方体的长宽高分别为:3,2,1,故体积为:6;
圆锥的底面半径为1,高为3,故体积为:π;
故组合体的体积V=6+π;
故选:A.

点评 本题考查的知识点是棱柱的体积和表面积,圆锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知无穷数列{an},a1=1,a2=2,对任意n∈N*,有an+2=an,数列{bn}满足bn+1-bn=an(n∈N*),若数列$\{\frac{{{b_{2n}}}}{a_n}\}$中的任意一项都在该数列中重复出现无数次,则满足要求的b1的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)-1
(1)说明该函数图象可由y=sinx的图象经过怎样平移和伸缩变换得到的.
(2)求函数的最值及满足最值的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴交于点R,与抛物线交于点S,且$|{FS}|=\frac{5}{4}|{RS}|$
(1)求抛物线的标准方程;
(2)过抛物线的焦点F,作垂直于y轴的直线l,P是抛物线上的一动点(异于l与C的交点),过点P的切线交l于点A,交抛物线的准线于点M,求证:$\frac{{|{FA}|}}{{|{FM}|}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=(m2-1)xm是幂函数,且在(0,+∞)上是增函数,则实数m的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义域为R的奇函数f(x)=$\frac{b-h(x)}{1+h(x)}$,其中h(x)是指数函数,且h(2)=4.
(1)求函数f(x)的解析式;
(2)求不等式f(2x-1)>f(x+1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题“?x∈R,4x2-3x+2<0”的否定是?x∈R,4x2-3x+2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.M是△ABC所在平面内一点,$\frac{2}{3}\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow 0$,D为AC中点,则$\frac{{|\overrightarrow{MD}|}}{{|\overrightarrow{BM}|}}$的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

同步练习册答案