精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分16分)

在平面直角坐标系中,已知椭圆的离心率,直线过椭圆的右焦点,且交椭圆两点.

1)求椭圆的标准方程;

2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.

【答案】(12)点恒在直线

【解析】试题分析:(1)直线x轴的交点为椭圆的右焦点,所以从而,所以椭圆的标准方程为.(2)探索性问题,先通过特殊情形探索目标:令,则根据对称性知满足题意的定直线只能是.问题转化为证明P,B,D三点共线,可利用斜率相等进行证明:设 ,则,从而 ,再利用直线与椭圆方程联立方程组得关于y的一元二次方程,由韦达定理得关系,进而得

试题解析:(1)由题设,得解得从而

所以椭圆的标准方程为4

2)令,则或者

时, ;当 时,

所以,满足题意的定直线只能是6

下面证明点恒在直线上.

,由于垂直于轴,所以点的纵坐标为,从而只要证明在直线上. 8

10

13

式代入上式,得, 所以15

恒在直线上,从而直线、直线与直线三线恒过同一点

, 所以存在一条定直线 使得点恒在直线上. 16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数g(x)满足g(x)=g′(1)ex1﹣g(0)x+ ,且存在实数x0使得不等式2m﹣1≥g(x0)成立,则m的取值范围为(
A.(﹣∞,2]
B.(﹣∞,3]
C.[1,+∞)
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,且B为钝角.
(1)求B﹣A的值;
(2)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题:
①函数y=sin4x﹣cos4x的最小正周期是π;
=tanα;
③函数y=sinx+cosx的图象均关于点( ,0)成中心对称;
④把函数y=3sin(2x+ )的图象向右平移 个单位得到y=3sin2x的图象.
其中正确命题的编号是 . (写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知为实数,函数,函数

1)当时,令,求函数的极值;

2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若将其图象向右平移 个单位后得到的图象关于原点对称,则函数f(x)的图象(
A.关于直线x= 对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a、b、c是常数,则“a>0且b2﹣4ac<0”是“对任意x∈R,有ax2+bx+c>0”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知角A、B、C所对的边分别为a、b、c,且a2+b2﹣c2= ab.

(1)求角C的大小;
(2)如果0<A≤ ,m=2cos2 ﹣sinB﹣1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】=(sinx,cosx), =(sinx,sinx), =(﹣1,0)

(1)若x= ,求 的夹角θ;
(2)若x∈[﹣ ],f(x)=λ 的最大值为 ,求λ.

查看答案和解析>>

同步练习册答案