精英家教网 > 高中数学 > 题目详情

已知函数,在区间上随机取一,则使得≥0的概率为     .

 

【答案】

【解析】

试题分析:可以得出,所以在区间上使的范围为,所以使得≥0的概率为

考点:本小题主要考查与长度有关的几何概型的概率计算.

点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
x2+a

在探究a=1时,函数f(x)在区间[0,+∞)上的最大值问题.为此,我们列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x)在[0,+∞)(a=1)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)写出函数f(x)(a=1)的定义域,并求f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
x2+a
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省广州市执信中学高一(上)期中数学试卷(解析版) 题型:解答题

探究函数的最小值,并确定取得最小值时x的值.列表如下,请观察表中y值随x值变化的特点,完成以下的问题.
x0.511.51.722.12.3347
y64.25179.368.4388.048.3110.71749.33
已知:函数在区间(0,2)上递减,问:
(1)函数在区间______上递增.当x=______时,y最小=______.
(2)证明:函数在区间(0,2)递减;
(3)思考:函数有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一上学期期中试题数学 题型:解答题

(本题满分12分)探究函数的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.

 

x

0.25

0.5

0.75

1

1.1

1.2

1.5

2

3

5

y

8.063

4.25

3.229

3

3.028

3.081

3.583

5

9.667

25.4

已知:函数在区间(0,1)上递减,问:

(1)函数在区间                   上递增.当                时,                 

(2)函数在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州市执信中学高一(上)期中数学试卷(解析版) 题型:解答题

探究函数f(x)=的最小值,并确定取得最小值时x的值.列表如下,请观察表中y值随x值变化的特点,完成以下的问题.
x0.250.50.7511.11.21.5235
y8.0634.253.22933.0283.0813.58359.66725.4
已知:函数f(x)=在区间(0,1)上递减,问:
(1)函数f(x)=在区间______上递增.当x=______时,y最小=______;
(2)函数在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

同步练习册答案