【题目】已知函数.
(1)当时,求的值域;
(2)当时,函数的图象关于对称,求函数的对称轴.
(3)若图象上有一个最低点,如果图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得的图象,又知的所有正根从小到大依次为,且,求的解析式.
【答案】(1);(2);(3).
【解析】
分析:(1)时,值域为,时,利用三角函数的有界性可得结果;(2)由时,函数的图象关于对称,利用辅助角公式可得关于的方程从而可求出的值,进而确定函数的解析式,由两角和的正弦公式将其化为一个角的三角函数,利用正弦函数的对称性求解即可;(3)根据图象上有一个最低点,结合辅助角公式可求得,从而得,由,分类讨论,排除不合题意的,从而可得结果.
详解:(1)当b=0时,函数g(x)=asinx+c.
当a=0时,值域为:{c}.
当a≠0时,值域为:[c﹣|a|,c+|a|].(
(2)当a=1,c=0时,
∵g(x)=sinx+bcosx 且图象关于x=对称,
∴||=,∴b=﹣.
∴函数 y=bsinx+acosx 即:y=﹣sinx+cosx= cos(x+).
由 x+=kπ,k∈z,可得函数的对称轴为:x=kπ﹣,k∈z.
(3)由g(x)=asinx+bcosx+c= sin(x+)+c,其中,sin=,cos=.
由g(x)图象上有一个最低点 (,1),所以,
∴,
∴g(x)=(c﹣1)sin(x﹣)+c.
又图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得y=f(x)的图象,则f(x)=(c﹣1)sinx+c.
又∵f(x)=3的所有正根从小到大依次为 x1、x2、x3…xn、…,且 xn﹣xn﹣1=3 (n≥2 ),
所以y=f(x)与直线y=3的相邻交点间的距离相等,根据三角函数的图象与性质,直线y=3要么过f(x)的最高点或最低点,要么是y=,
即:2c﹣1=3或 1﹣c+c=3(矛盾)或 =3,解得c=2 或 c=3.
当c=2时,函数的 f(x)=sin+2,T=6.
直线 y=3和 f(x)=sin+2相交,且 xn﹣xn﹣1=3 (n≥2 ),周期为3(矛盾).
当c=3时,函数 f(x)=2sin+3,T=6.
直线直线 y=3和 f(x)=2sin+3相交,且 xn﹣xn﹣1=3 (n≥2 ),周期为6(满足条件).
综上:f(x)=2sin+2.
科目:高中数学 来源: 题型:
【题目】如图,点是椭圆:的短轴位于轴下方的端点,过作斜率为1的直线交椭圆于点,点在轴上,且轴, .
(1)若点的坐标为,求椭圆的方程;
(2)若点的坐标为,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一动圆与圆外切,与圆内切.
(1)求动圆圆心的轨迹的方程.
(2)设过圆心的直线与轨迹相交于两点,(为圆的圆心)的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于n∈N* , 若数列{xn}满足xn+1﹣xn>1,则称这个数列为“K数列”.
(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;
(Ⅱ)是否存在首项为﹣1的等差数列{an}为“K数列”,且其前n项和Sn满足 ?若存在,求出{an}的通项公式;若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列{an}是“K数列”,数列 不是“K数列”,若 ,试判断数列{bn}是否为“K数列”,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点,直线l:(其中).
(Ⅰ)求直线l所经过的定点P的坐标;
(Ⅱ)若分别过A,B且斜率为的两条平行直线截直线l所得线段的长为,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com